Complex numbers and complex plane

Example 1

Write down the following numbers as the form a + bi, where a and b are real numbers and $i^2 = -1$.

$$(1) (3+2i) + (5-i)$$

(2)
$$i - (6+2i)$$

(3)
$$\sqrt{-3} \times \sqrt{-6}$$

$$(4) \ \frac{\sqrt{3}}{\sqrt{-7}}$$

[1] Evaluate the following numbers.

$$(1) (4-2i) + (5-2i)$$

$$(3) (3+2i)(2-3i)$$

$$(5) \ \sqrt{-5} \times \sqrt{-20}$$

$$(2) (5-2i)-(2-4i)$$

(4)
$$\frac{3+26}{3-26}$$

$$(6) \ \frac{\sqrt{6}}{\sqrt{-2}}$$

Let \overline{z} be the conjugate of z = a + bi, i.e. $\overline{z} = a - bi$.

Let $\alpha,\ \beta$ be complex numbers . Then prove the following equalities.

$$(1) \ \overline{\alpha \pm \beta} = \overline{\alpha} \pm \overline{\beta}$$

$$(2) \ \overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$$

$$(3) \ \overline{\left(\frac{\alpha}{\beta}\right)} = \frac{\overline{\alpha}}{\overline{\beta}}$$

- [2] Let $\alpha = \frac{z}{1+z^2}$, where z is a complex number and $z \neq \pm i$. Prove that α is a real number if |z| = 1.
- [3] Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where a_0, a_1, \dots, a_n are real numbers. Prove that the equation f(x) = 0 has a root $\overline{\alpha}$, if α is a root of f(x) = 0.

Put the following complex numbers to the complex plane. (Argand diagrams) And write down as a polar coordinates.

- $(1) -1 + \sqrt{3}i$
- (2) 1 i
- $(3) \ 3i$

- [4] Put the following complex numbers to the complex plane. (Argand diagrams) And write down as a polar coordinates.
 - (1) 2 + 2i
 - (2) -i
 - (3) $-\sqrt{3} + i$

Let $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

Prove the following equalities.

- (1) $z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$
- (2) $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 \theta_2) + i\sin(\theta_1 \theta_2))$
- (3) $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ (De Moivre's theorem)

[5] Evaluate the following expressions and write down as the polar coordinates.

(1)
$$2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) \times 3(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$$

(2)
$$\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)^6$$

(3)
$$(-1+\sqrt{3}i)^5$$

(4)
$$\frac{3+3i}{-1-\sqrt{3}i}$$

Let

$$z^5 = 1 \cdots (*)$$

- (1) Solve the equation (*) by using the polar coordinates.
- (2) Solve the equation (*) algebraically.
- (3) Evaluate $\cos 72^{\circ}$

[6] Solve the following equations, using the polar coordinates.

(1)
$$z^3 = 1$$

(2)
$$z^4 = -1$$

(3)
$$z^3 = 4\sqrt{3} + 4i$$

[7] Using the De Moivre's theorem, prove that

$$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$$

[8] Prove the fullowing equalities.

(1)
$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{\cos \frac{n}{2}\theta \sin \frac{n+1}{2}\theta}{\sin \frac{\theta}{2}}$$

(2)
$$\sin \theta + \sin 2\theta + \dots + \sin n\theta = \frac{\sin \frac{n}{2}\theta \sin \frac{n+1}{2}\theta}{\sin \frac{\theta}{2}}$$

Execises

- [1] Let $\alpha = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$, $f(z) = z^6 + z^5 + z^4 + z^3 + z^2 + z + 1$, where i is the imaginary unit.
 - (1) Using α , find the every roots of the equation f(z) = 0.
 - (2) Let $g(z) = (z-1)(z^2-1)(z^4-1)$, and $h(z) = (z^3-1)(z^5-1)(z^6-1)$ Evaluate $g(\alpha) + h(\alpha)$ and $g(\alpha)h(\alpha)$. Then evaluate $g(\alpha)$ and $h(\alpha)$.
 - [2] Using the results of [1], calculate

$$\sin\frac{2\pi}{7}\sin\frac{4\pi}{7}\sin\frac{6\pi}{7}$$

- [2] Let z be a complex number, satisfying $z^2 + \frac{1}{z^2} = \sqrt{3}$ and $Re(z) \ge 0$, $Im(z) \ge 0$.
 - (1) Find the argument and the absolute value of z.
 - (2) Evaluate $z + \frac{1}{z}$.
 - (3) Evaluate the area of the quadrilateral OACB, whose vertices are O(0), A(z), B $\left(\frac{1}{z}\right)$, C $\left(z + \frac{1}{z}\right)$ on the complex plane.

[3] Given the triangle $\triangle ABC$, whose vertices are $A(z_1)$, $B(z_2)$, $C(z_3)$ on the complex plane. And we have the condition:

$$(3-4i)z_1 + 4iz_2 - 3z_3 = 0$$

- (1) Express $z_3 z_1$ with z_1 and z_2 .
- (2) Find the ratio of three sides AB : BC : CA of the triangle and evaluate ∠BAC.

6

- [4] Let A, B be represented by z_1 , and z_2 on the complex plane. Suppose z_1 and z_2 satisfying $z_2 = iaz_1$ (*i* is the imaginary unit, *a* is a real number satisfying a > 0) and $|z_1| + |z_2| + |z_1 z_2| = 1$.
 - (1) Express $|z_1|$ with a.
 - (2) Find the area of $\triangle OAB$, using a.
 - (3) Let $m = \sqrt{a} + \frac{1}{\sqrt{a}}$. Express the area of $\triangle OAB$ with m.
 - (4) Find the maximum of the area of $\triangle OAB$, when a changes the range of a > 0.

[5] Let α , β , γ be different complex number each other, satisfying :

$$2\alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta - 2\alpha\gamma = 0$$

- (1) Find the value of $\frac{\gamma \alpha}{\beta \alpha}$
- (2) What type of triangle is $\triangle ABC$, whose vertices are A, B, C.
- (3) Let α , β , γ be three roots of the cubic equation

$$x^3 + kx + 20 = 0$$

where k is a real constant. Find α , β , γ and k.

- [6] Let $\{z_n\}$ be a sequence of complex numbers, which satisfies $z_1=3$ and $z_{n+1}=(1+i)z_n+i$ $(n\geq 1).$
 - (1) Find z_n .
 - (2) Prove that $z_{8m-7} = 2^{5m-2} 1$ for every positive integer m.
 - (3) Let P_n be a point on the complex plane, defined by the complex number z_n . Find the area

of the triangle whose vertices are P_n , P_{n+1} , P_{n+2} .