Differential Calculus (1) - Derivatives

Definition of a derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Formulae of derivatives

$$
\begin{aligned}
& (f \pm g)^{\prime}=f^{\prime} \pm g^{\prime} \\
& (f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime} \\
& \left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \\
& (g \circ f(x))^{\prime}=g^{\prime}(f(x)) f^{\prime}(x)
\end{aligned}
$$

Derivatives of elementary functions

$$
\begin{aligned}
& \left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \\
& (\sin x)^{\prime}=\cos x \\
& (\cos x)^{\prime}=-\sin x \\
& (\tan x)^{\prime}=\frac{1}{\cos ^{2} x} \\
& \left(e^{x}\right)^{\prime}=e^{x} \\
& \left(a^{x}\right)^{\prime}=a^{x} \log a \\
& (\log x)^{\prime}=\frac{1}{x}
\end{aligned}
$$

Formulae of derivatives - parametric functions, Inverse functions
Putting $x=f(t), y=g(t)$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\
& \frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}
\end{aligned}
$$

Taylor series

Suppose that $f(x)$ is infinitely differentiable in a neighbourhood of a, then

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
$$

Especially when $a=0$, the series is also called a Maclaurin series.

$$
f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

Example 1

Find the derivative for following functions.
(1) $y=x^{4}\left(x^{2}+1\right)$
(2) $y=\frac{2 x}{x-1}$
(3) $y=\sqrt[4]{3 x-5}$
(4) $y=\frac{1}{\sqrt{x-1}}$
[1] Find the derivative for following functions.
(1) $y=x^{2}(1-x)$
(2) $y=\left(x^{2}+2 x-1\right)\left(x-x^{2}\right)$
(3) $y=(x-1)(x-2)(x-3)$
(4) $y=\frac{x+1}{x_{2}^{2}}$
(5) $y=\frac{x^{2}+1}{x^{2}-1}$
(6) $y=\frac{3 x^{2}-2 x+1}{x^{2}+2}$
(7) $y=\left(x^{2}+1\right)^{7}$
(9) $y=\sqrt[3]{\frac{x-1}{x}}$
(8) $y=\frac{x^{2}}{(x+1)^{3}}$
(10) $y=\sqrt[5]{\frac{x^{2}}{2 x+1}}$
(11) $y=\frac{\sqrt{x-1}+\sqrt{x+1}}{\sqrt{x+1}-\sqrt{x-1}}$
(12) $y=\sqrt{\frac{(x-1)(x+3)}{(x+1)^{3}}}$

Example 2

Find the derivative for following functions.
(1) $y=\sin ^{3} x$
(2) $y=\cos 3 x$
(3) $y=x^{3} \sin x$
(4) $y=\sin (\cos x)$
(5) $y=\log 2 x$
(6) $y=\left(x^{2}+1\right) e^{-3 x}$
[2] Find the derivative for following functions.
(1) $y=\cos x-x$
(2) $y=x \cos ^{2} x$
(3) $y=\sin \left(\frac{\pi}{6}-2 x\right)$
(4) $y=\tan ^{2} x^{3}$
(5) $y=\cos ^{4} x^{3}$
(6) $y=x^{2} \sin ^{3} 2 x$
(7) $y=\cos ^{3} x \sin x^{3}$
(8) $y=e^{\frac{x}{2}}$
(9) $y=x^{2} e^{-x}$
(10) $y=\log \sqrt{x+1}$
(11) $y=e^{x} \log x$
(12) $y=\frac{x \log x}{\sin x^{2}}$

Example 3

[1] Take a logarithm of each side, and find the derivative for y
(1) $y=x^{x}$
(2) $y=\sqrt[3]{\frac{x+1}{x+4}}$
[2] Find the second derivative for following functions.
(1) $y=\sqrt{x+1}$
(2) $y=\log x$
[3] Find the derivative for following functions.
(1) $y=\sqrt[x]{x}$
(2) $y=x^{x^{2}}$
(3) $y=\frac{(x+1)^{3}}{(3 x-1)^{2}(2 x+1)^{4}}$
(4) $y=x^{\alpha} \log x$
[4] Find $f^{\prime \prime}(0)$, where $f(x)=\frac{1}{2} e^{x^{2}}$.

Differential Calculus (2) - Applications

Example 4

Sketch the graph of following functions.
(1) $y=\frac{2 x^{2}-x+1}{x-1}$
(2) $y=\frac{1}{x^{2}+4}$
(3) $y=x \sqrt{1-x}$
(4) $y=\sqrt[3]{x^{2}(x-2)}$
[5] Sketch the graph of following functions.
(1) $y=\frac{x^{2}+3 x+6}{x+2}$
(2) $y=\frac{1}{x}-\frac{1}{x+2}$
(3) $y=\frac{x^{2}}{\sqrt{1-x}}$
(4) $y=\sqrt[3]{x^{2}(x+2)}$
[6] Check local maxima and local minima of $f(x)=\frac{x}{(x-1)^{2}}$, and sketch its graph. If exist find inflection points,
[7] Given $y=(x-1)^{\frac{1}{3}}(x+1)^{\frac{2}{3}}$.
(1) Find local maxima and local minima, and check the concavity of the function.
(2) Sketch the graph of this function.

Example 5

Sketch the graph of following functions.
(1) $y=\frac{\cos x}{1-\cos x} \quad(0 \leqq x \leqq 2 \pi)$
(2) $y=\frac{1}{e^{x}+x^{-x}}$
(3) $y=\log \frac{x-1}{x}$
(4) $x=\cos ^{3} t, y=\sin ^{3} t \quad(0 \leqq t \leqq 2 \pi)$
[8] Sketch the graph of following functions. If needed, use the result $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$ without prove.
(1) $y=\cos x-\frac{1}{2} \sin 2 x \quad(0 \leqq x \leqq 2 \pi)$
(2) $y=2 \sin x+\sin 2 x \quad(0 \leqq x \leqq 2 \pi)$
(3) $y=x e^{-x}$
(4) $y=x \log x$
[9] Check the region of increase and decrease, and concavity of the function $f(x)=\left(\frac{1}{x}\right)^{\log x} \quad(x>$ $0)$, and sketch the graph of this function.

Example 6

Find the value a and b, when $y=e^{\frac{x}{3}}$ and $y=a \sqrt{2 x-2}+b$ have the same tangent line at $x=3$.
[10] (1) Find the equation of tangent of $y=x+\sin x$ at $(0,0)$.
(2) Find the equation of tangent of $\sqrt{x}+\sqrt{y}=1$, which passes at the point $\left(1,-\frac{1}{2}\right)$.

Example 7

(1) How many different roots does the equation $e^{x}+x-1=0$ have?
(2) Show the inequality $x \geqq \log (x+1) \geqq \frac{x}{x+1}$ when $x>-1$.
[11] (1) How many different roots does the equation $x^{5}+1=k(x+1)^{5}$ have?
(2) Show the inequality $e^{x}>1+x$ when $x>0$.

Example 8

(1) Find the Maclaurin series of $f(x)=e^{x}$
(2) Find the Maclaurin series of $f(x)=\arctan x$
[12] Give the Taylor polynomials of degree 3 at $x=0$ for the following functions.
(1) $f(x)=\sin x-\cos x$
(2) $f(x)=e^{x}-e^{-x}$
(3) $f(x)=\tan x$
(4) $f(x)=\ln \frac{1+x}{1-x}$

Exercise

[1] Find derivative for following functions.
(1) $y=e^{-a x} \sin b x$, where a and b are constants.
(2) $y=x^{3} \sqrt{1+x^{2}}$, where $x>0$.
[2] Find the tangent of $y=x \sqrt{1-x^{2}}$ at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)$.
[3] Given the function $f(x)=\frac{4 x^{2}+3}{2 x-1}$.
(1) Find the derivative for $f^{\prime}(x)$.
(2) Find local maxima and local minima of $f(x)$
(3) Find equations of asymptote of $y=f(x)$.
(4) Sketch the graph of $y=f(x)$
[4] Given a line $l: y=x+1$ and a point P on the curve $y=\log x$. Find the coordinate of P , when the distance between P and l is minimum. And evaluate this minimum distance.
[5] Let $g(x)$ be the inverse function of $f(x)=e^{x-c}$, where c is a constant.
(1) Find $g(x)$
(2) How many points do $y=f(x)$ and $y=g(x)$ intersect each other?
[6] Given $C: y=x^{2}$ and the line $l_{t}: y=t x-1(t>0)$ which do not intersect each other.
(1) Evaluate the range of t.
(2) Let P_{t} be the point P on C and let Q_{t} be the point Q on l_{t}, when the distance between P and Q is minimum. Present the coordinates of P_{t} as function of t.
(3) Let $f(t)$ be length of the segment of line $\mathrm{P}_{t} \mathrm{Q}_{t}$ cutting by C. Find the minimum of $f(t)$, when t moves the range calculated at (1).
[7] (1) Show the inequality $e^{x}>1+x(x>0)$.
(2) Show the inequality $e^{x}>1+x+\frac{x^{2}}{2}(x>0)$.
(3) Show the inequality $e^{x}>\sum_{k=0}^{n} \frac{x^{k}}{k!}(x>0)$ by induction, where n is a positive integer.
(4) Show that $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty$, where n is a positive integer.
[8] (1) Using the addition formula for the tangent, prove that

$$
\frac{\pi}{4}=\arctan \frac{1}{2}+\arctan \frac{1}{3}
$$

(2) Prove that $\pi=3.14159 \ldots$

