Exponential and logarithm

Exemple 1

Express the following expressions as exponential form as a^{r}.
(1) $a^{\frac{1}{2}} \times a^{\frac{1}{3}} \div a^{\frac{1}{6}}$
(2) $a^{-\frac{1}{2}} b^{\frac{1}{3}} \times a^{\frac{3}{4}} b^{-\frac{5}{6}}$
(3) $\sqrt{\frac{x z^{3}}{y^{2}}} \div \sqrt[4]{\frac{x^{2} y}{z^{3}}}$
(4) $\sqrt[4]{\sqrt{a} \times \frac{a}{\sqrt[3]{a}}}$
[1] Express the following expressions as exponential form as a^{r}.
(1) $\left(a^{\frac{1}{2}} \cdot a^{-\frac{1}{2}}\right)^{1} 5$
(2) $\left\{\left(\frac{125}{64}\right)^{\frac{1}{4}}\right\}^{-\frac{2}{3}}$
(3) $a \times\left(a^{-2} b^{-3}\right)^{-2} \div\left(a b^{-1}\right)^{3}$
(4) $\left\{\left(\frac{16}{125}\right)^{-\frac{3}{4}}\right\}^{-\frac{9}{2}}$
[2] Evaluate $\frac{3^{3 x}+3^{-3 x}}{3^{x}+3^{-x}}$, when $3^{2 x}=5$.

Example 2

Sketch graphs of the following functions.
(1) $y=2^{x}$
(2) $y=\left(\frac{1}{2}\right)^{x}$
(3) $y=2^{x-1}$
(4) $y=-\left(\frac{1}{2}\right)^{x}$
[3] Solve the following equations and inequalities.
(1) $5^{x}=625$
(2) $4^{x}=8$
(3) $(\sqrt{2})^{x}=32 \cdot 2^{-2 x}$
(4) $2^{x} \geq 256$
(5) $\left(\frac{2}{3}\right)^{x} \leq \frac{9}{4}$
(6) $2^{2 x-3} \cdot 2^{x}+2>0$

Example 3

Evaluate the following expiessions.
(1) $\log _{2} 8$
(2) $\log _{2} \sqrt[3]{2}$
(3) $\log _{3} \frac{1}{81}$
(4) $\log _{10} \frac{1}{1000}$
[4] Evaluate the following expressions.
(1) $\log _{3} \sqrt[5]{9}$
(2) $\log _{10} 100 \sqrt{10}$
(3) x when $\log _{x} 243=5$
(4) x when $\log _{x} \sqrt[4]{3}=\frac{1}{2}$

Example 4
Simplify the following expressions.
(1) $\left(\log _{2} \frac{9}{4}\right)^{2}-\left(\log _{2} 9\right)^{2}+2 \log _{2} 81$
(2) $\left(\log _{4} 3\right) \cdot\left(\log _{9} 25\right) \cdot\left(\log _{5} 8\right)$
[5] Simplify the following expressions.
(1) $\left(\log _{10} 2\right)^{3}+\left(\log _{10} 5\right)^{3}+\left(\log _{10} 5\right) \cdot\left(\log _{10} 8\right)$
(2) $\frac{1}{2} \log _{2} 10+\log _{4} 14-3 \log _{8} \sqrt{35}$
(3) $\left(\log _{2} 6\right) \cdot\left(\log _{3} 6\right)-\left(\log _{2} 3+\log _{3} 2\right)$
(4) $\left(\log _{2} 3+\log _{4} 9\right)\left(\log _{3} 4+\log _{9} 2\right)$

Example 5

Solve the following equations and inequalities.
(1) $\log _{10} x+\log _{10}(x-1)=\log _{10} 2+1$
(2) $\left(\log _{2} x\right)^{2}-\log _{2} x^{2}+2=0$
(3) $\log _{a}(2 x-1) \geq \log _{a}(x+1) \quad(a>0, a \neq 1)$
(4) $\left(\log _{10} 4 x\right)\left(\log _{10} 8 x\right) \leq 12\left(\log _{10} 2\right)^{2}$
[6] Solve the following equations and inequalities.
(1) $\log _{4}\left(4+x-x^{2}\right)=\frac{1}{2}+\log _{2}(1-x)$
(2) $\left(\log _{2}\right)^{2}-2 \log _{2} x-3 \geq 0$
(3) $\left(\log _{3} x\right)\left(\log _{3} \frac{x}{9}\right)=8$
(4) $3 \cdot 2^{2 x-2}+2^{x-1}-2^{-2} \leq 0$

Example 6
(1) Suppose that $0 \leq x \leq 2$. Find the maximum and minimum of $y=2^{1-2 x}-2^{1-x}+1$ and find the values of x at these points.
(2) Find the minimum of $y=\left(\log _{2} x\right)^{2}+\log _{4} \frac{x^{8}}{4}$ and the value of x at this point.
[7] Given $f(x)=2^{2 x}+\frac{1}{2^{2 x}}-3 \sqrt{2}\left(2^{x}+\frac{1}{2^{x}}\right)+4$,
(1) Putting $2^{x}+\frac{1}{2^{x}}=t$, express $f(x)$ with t.
(2) Find the minimum of $f(x)$ and the value of x at this point.
[8] Find the minimum of $2 x+3 y$, when $\log _{3} x+\log _{3} y=5$

Example 7

Let $\log _{10} 2=0.3010, \log _{10} 3=9.4771$.
(1) Find the digits of number 15^{15}.
(2) How many zeros does continue when you express $\left(\frac{5}{9}\right)^{100}$ as a decimal number?
(3) Show that $8^{m}>9^{n}$, when $100 m>106 n$, where m, n are positive integers.
[9] Let $\log _{10} 2=0.3010, \log _{10} 3=9.4771, \log _{10} 7=0.84510$.
(1) Find the range of $\log _{10} x$ when $60000 \leq x \leq 70000$.
(2) Find the digits of number 3^{2011}.
(3) Find the highest digit's number of 3^{2011}
(4) Find the lowest digit's number of 3^{2011}
[10] Let $\log _{10} 2=0.3010, \log _{10} 3=9.4771$.
When the light passes a glass, it's quantity loses $\frac{1}{10}$. Using such glasses, we want that the quantity of light is less than $\frac{1}{5}$ of the initial quantity. Find the minimum number of glasses, which we need. Let $\log _{10} 2=0.3010, \log _{10} 3=9.4771$

Exercises

[1] Evaluate $\log _{2}(\sqrt{5+\sqrt{24}}-\sqrt{5-\sqrt{24}})$
[2] Evaluate $\log _{5} 25+\log _{5} 75-\log _{5} 3+\frac{\log _{5} 27}{\log _{5} 9}$.
[3] Solve the inequality $\log _{2} x-3 \log _{x} 2>2$.
[4] Find the maximum and minimum of $y=2 \log _{5} x+\left(\log _{5} x\right)^{2}$, when $1 \leq x \leq 5$
[5] Solve the following system of equations

$$
\left\{\begin{array}{l}
\log _{2} x y=\log _{2} x \cdot \log _{2} y \\
\log _{2} \frac{y}{x}=\frac{3}{2}
\end{array}\right.
$$

[6] Let a be a constant number as $a>\frac{1}{2}$. When $1 \leq x \leq 2 a$, find the maximum and minimum of

$$
y=\left(\log _{2} \frac{x}{a}\right)\left(\log _{2} \frac{x^{2}}{a^{2}}\right)
$$

[7] Given a sequence $\left\{a_{n}\right\}$ as

$$
a_{1}=1, \quad a_{n+1}=2 a_{n}^{2} \quad(n=1,2,3, \cdots)
$$

(1) Express a_{n} with n.
(2) How many positive integers n satisfying $a_{n}<10^{60}$.

For question (2), you use $\log _{10} 2=0.3010$.

