Exponential and logarithm

[1] Express the following expressions as exponential form as a^r .

(1)
$$(a^{\frac{1}{2}} \cdot a^{-\frac{1}{2}})^{1}5$$

(3) $a \times (a^{-2}b^{-3})^{-2} \div (ab^{-1})^{3}$
(2) $\{(\frac{125}{64})^{\frac{1}{4}}\}^{-\frac{2}{3}}$
(4) $\{(\frac{16}{125})^{-\frac{3}{4}}\}^{-\frac{9}{2}}$

[2] Evaluate
$$\frac{3^{3x} + 3^{-3x}}{3^x + 3^{-x}}$$
, when $3^{2x} = 5$.

- Example 2	
Sketch graphs of the following functions.	
(1) $y = 2^x$	(2) $y = (\frac{1}{2})^x$
(3) $y = 2^{x-1}$	(4) $y = -(\frac{1}{2})^x$

[3] Solve the following equations and inequalities.

(1) $5^x = 625$	(2) $4^x = 8$
(3) $(\sqrt{2})^x = 32 \cdot 2^{-2x}$	(4) $2^x \ge 256$
(5) $(\frac{2}{3})^x \le \frac{9}{4}$	(6) $2^{2x-3} \cdot 2^x + 2 > 0$

Example 3	
Evaluate the following expiessions.	
(1) $\log_2 8$	(2) $\log_2 \sqrt[3]{2}$
(3) $\log_3 \frac{1}{81}$	(4) $\log_{10} \frac{1}{1000}$

- [4] Evaluate the following expressions.
 - (1) $\log_3 \sqrt[5]{9}$
 - (3) x when $\log_x 243 = 5$

(2) $\log_{10} 100\sqrt{10}$ (4) x when $\log_x \sqrt[4]{3} = \frac{1}{2}$

Simplify the following expressions.

- $(1) \ (\log_2 \frac{9}{4})^2 (\log_2 9)^2 + 2\log_2 81$
- $(2) \ (\log_4 3) \cdot (\log_9 25) \cdot (\log_5 8)$

- [5] Simplify the following expressions.
 - (1) $(\log_{10} 2)^3 + (\log_{10} 5)^3 + (\log_{10} 5) \cdot (\log_{10} 8)$
 - $(2) \ \frac{1}{2} \log_2 10 + \log_4 14 3 \log_8 \sqrt{35}$
 - (3) $(\log_2 6) \cdot (\log_3 6) (\log_2 3 + \log_3 2)$
 - (4) $(\log_2 3 + \log_4 9)(\log_3 4 + \log_9 2)$

Solve the following equations and inequalities.

- (1) $\log_{10} x + \log_{10} (x 1) = \log_{10} 2 + 1$
- (2) $(\log_2 x)^2 \log_2 x^2 + 2 = 0$
- (3) $\log_a(2x-1) \ge \log_a(x+1)$ $(a > 0, a \ne 1)$
- (4) $(\log_{10} 4x)(\log_{10} 8x) \le 12(\log_{10} 2)^2$

- [6] Solve the following equations and inequalities.
 - (1) $\log_4(4+x-x^2) = \frac{1}{2} + \log_2(1-x)$
 - (2) $(\log_2)^2 2\log_2 x 3 \ge 0$
 - (3) $(\log_3 x)(\log_3 \frac{x}{9}) = 8$
 - (4) $3 \cdot 2^{2x-2} + 2^{x-1} 2^{-2} \le 0$

- (1) Suppose that $0 \le x \le 2$. Find the maximum and minimum of $y = 2^{1-2x} 2^{1-x} + 1$ and find the values of x at these points.
- (2) Find the minimum of $y = (\log_2 x)^2 + \log_4 \frac{x^8}{4}$ and the value of x at this point.

[7] Given $f(x) = 2^{2x} + \frac{1}{2^{2x}} - 3\sqrt{2}(2^x + \frac{1}{2^x}) + 4$,

(1) Putting $2^x + \frac{1}{2^x} = t$, express f(x) with t.

(2) Find the minimum of f(x) and the value of x at this point.

[8] Find the minimum of 2x + 3y, when $\log_3 x + \log_3 y = 5$

Let $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 9.4771$.

- (1) Find the digits of number 15^{15} .
- (2) How many zeros does continue when you express $(\frac{5}{9})^{100}$ as a decimal number?
- (3) Show that $8^m > 9^n$, when 100m > 106n, where m, n are positive integers.

- [9] Let $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 9.4771$, $\log_{10} 7 = 0.84510$.
 - (1) Find the range of $\log_{10} x$ when $60000 \le x \le 70000$.
 - (2) Find the digits of number 3^{2011} .
 - (3) Find the highest digit's number of 3^{2011}
 - (4) Find the lowest digit's number of 3^{2011}
- [10] Let $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 9.4771$.

When the light passes a glass, it's quantity loses $\frac{1}{10}$. Using such glasses, we want that the quantity of light is less than $\frac{1}{5}$ of the initial quantity. Find the minimum number of glasses, which we need. Let $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 9.4771$

Exercises

[1] Evaluate
$$\log_2(\sqrt{5} + \sqrt{24} - \sqrt{5} - \sqrt{24})$$

[2] Evaluate $\log_5 25 + \log_5 75 - \log_5 3 + \frac{\log_5 27}{\log_5 9}$.

 $[3] \ \text{Solve the inequality } \log_2 x - 3 \log_x 2 > 2.$

[4] Find the maximum and minimum of $y = 2\log_5 x + (\log_5 x)^2$, when $1 \le x \le 5$

[5] Solve the following system of equations

$$\begin{cases} \log_2 xy = \log_2 x \cdot \log_2 y\\ \log_2 \frac{y}{x} = \frac{3}{2} \end{cases}$$

[6] Let a be a constant number as $a > \frac{1}{2}$. When $1 \le x \le 2a$, find the maximum and minimum of

$$y=(\log_2 \frac{x}{a})(\log_2 \frac{x^2}{a^2})$$

[7] Given a sequence $\{a_n\}$ as

 $a_1 = 1, \quad a_{n+1} = 2a_n^2 \quad (n = 1, 2, 3, \cdots)$

- (1) Express a_n with n.
- (2) How many positive integers n satisfying $a_n < 10^{60}$.
- For question (2), you use $\log_{10} 2 = 0.3010$.