Coordinate geometry

Example 1
[1] Calculate the distance between following two points.
(1) $A(1,2), B(-5,2)$
(2) $A(-3,-1), B(-3,7)$
[2] (1) Find the point which divides internally in the ratio 1:2 of the segment $A B$, where $A(1,1), B(-3,2)$,
(2) Find the point which divides externally in the ratio $1: 2$ of the segment $A B$, where $A(1,1), B(-3,2)$,
(3) Find the midpoint of the segment $A B$, where $A(-1,5), B(-3,2)$.
[1] Calculate the distance between following two points.
(1) $A(1,-2), B(5,2)$
(2) $A(3,1), B(-3,-7)$
[2] (1) Find the point which divides internally in the ratio $2: 3$ of the segment $A B$, where $A(6,-1), B(-3,-2)$,
(2) Find the point which divides externally in the ratio $3: 1$ of the segment $A B$, where $A(2,1), B(3,2)$,
(3) Find the midpoint of the segment $A B$, where $A(4,5), B(-3,2)$.
[3] Find the centre of gravity of the triangle $A B C$, where $A(1,-1), B(3,2), C(-1,5)$.

Example 2

Find the equation of the line, which satisfies the following condition.
(1) Line passing through the point $A(1,3)$ and it's gradient is -3 .
(2) Line passing through two points $A(-2,3), B(3,-1)$.
(3) Line ssing through two points $A(-5,1), B(-5, \sqrt{3})$.
(4) Line ssing through the point $A(-3,-7)$ and parallel to the line $y=-2 x+11$.
(5) Line passing through the point $A(-3,-7)$ and perpendicular to the line $y=-2 x+$ 11.
[4] Find the equation of the line, which satisfies the following condition.
(1) Line passing through $A(-5,2)$ and it's gradient is $\frac{1}{2}$.
(2) Line passing through two points $A(2,-3), B(-3,-1)$.
(3) Line passing through two points $A(\sqrt{5}, 1), B(\sqrt{5}, \sqrt{3})$.
(4) Line passing through $A(-3,-7)$ and parallel to the line $x=-1$.
(5) Line passing through $A(5,1)$ and perpendicular to the line $y=\frac{1}{3} x+1$.

Example 3

Find the equation of the circle, which satisfies the following condition.
(1) Circle whose centre is $(1,-2)$ and its radius is 3 .
(2) Circle whose edges of the diameter are $(1,-1),(3,3)$.
(3) Circle passing through three points $(1,0),(3,-2),(-1,5)$.
(4) Circle passing through $(2,3)$ and tangent to the both x-axis and y-axis.
[5] Find the equation of the circle, which satisfies the following condition.
(1) Circle whose centre is $(1,1)$ and its radius is 2 .
(2) Circle whose edges of the diameter are $(1,0),(-3,3)$.
(3) Circle passing through three points $(2,2),(-3,-2),(1,5)$.
(4) Circle passing through $(-2,4)$ and tangent to the both x-axis and y-axis.
(5) Circle passing through $(1,1),(-3,5)$ and tangent to the both x-axis.

Example 4
(1) Find the distance between the point $(0,0)$ and the line $a x+b y+c=0$.
(2) Find the distance between the point $\left(x_{0}, y_{0}\right)$ and the line $a x+b y+c=0$.
[6] Find the distance between the following point and line.
(1) $(1,1), 3 x-y=3$
(2) $(-2,4), \quad y=-x+5$
(3) $(0,0), \quad y=x+1$
(4) $(-3,2), \quad y=-1$
[7] Given the triangle $A B C$, where $A(1,-1), B(3,2), C(-1,5)$.
(1) Find the equation of the line passing through A, B.
(2) Find the distance between the point C and the line $A B$.
(3) Estimate the wire od the triangle $A B C$.

Example 5

(1) Find the equation of the tangent of the circle $x^{2}+y^{2}=r^{2}$ at the point $\left(x_{0}, y_{0}\right)$.
(2) Find the equation of the tangent of the circle $(x-a)^{2}+(y-b)^{2}=r^{2}$ at the point $\left(x_{0}, y_{0}\right)$.
(3) Find the equation of the line, which passes on the point $A(2,-5)$ and tangent to the circle $(x+1)^{2}+(y-3)^{2}=4$.
[8] Find the equation of the tangent od the following circle at the given point.
(1) $x^{2}+y^{2}=4, \quad(-1, \sqrt{3})$
(2) $x^{2}+y^{2}-2 x-y=0, \quad(0,0)$
[9] Find the equation of the tangent of the circle $(x+1)^{2}+(y-1)^{2}=4$, and passes on the point (1,7).
[1] Check the relation (intersect with two different points, tangent or no common points) between the following circle and line.
(1) $x^{2}+y^{2}=5, \quad y=-x+\sqrt{10}$
(2) $(x-1)^{2}+(y-1)^{2}=4, \quad x-y=1$
(3) $(x+2)^{2}+(y-1)^{2}=3, \quad y=3 x=10$
[2] Let A, B the two points intersecting of $x^{2}+y^{2}-4 x+2 y-5=0$ and $y=-x+1$. Find the length of the segment $A B$.
[10] Check the relation (intersect with two different points, tangent or no common points) between the following circle and line.
(1) $x^{2}+y^{2}=4, \quad y=-x+5$
(2) $(x+1)^{2}+(y-1)^{2}=5, \quad y=2 x+1$
(3) $(x-2)^{2}+(y+1)^{2}=2, \quad y=x-1$
[11] Find the distance between the two intersecting points of $(x+3)^{2}+(y-1)^{2}=5$ and $y=2 x-6$.

Example 7

[1] Check the relation (intersect with two different points, tangent or no common points) between the following circles
(1) $x^{2}+y^{2}=2, \quad(x-3)^{2}+(y+4)^{2}=9$
(2) $(x-1)^{2}+(y-1)^{2}=4, \quad x^{2}+(y-1)^{2}=2$
(3) $(x+2)^{2}+(y-1)^{2}=3, \quad(x-1)^{2}+(y+3)^{2}=2$
[2] Find the equation of the circle which passes the two intersecting points of $(x-$ $1)^{2}+(y-1)^{2}=4$ and $(x-2)^{2}+y^{2}=1$, and the origin $(0,0)$.
[12] Check the relation (intersect with two different points, tangent or no common points) between the following circles
(1) $x^{2}+y^{2}=1, \quad(x+3)^{2}+(y+4)^{2}=16$
(2) $(x+1)^{2}+(y-2)^{2}=4, \quad x^{2}+(y+1)^{2}=2$
(3) $(x+2)^{2}+(y-5)^{2}=3, \quad(x-1)^{2}+(y-3)^{2}=1$
[13] find the equation of the line passing through the two intersecting points of $(x-1)^{2}+(y-$ $1)^{2}=4$ and $(x-2)^{2}+y^{2}=1$.

Example 8
[1] Draw the region defined by the following inequalities.
(1) $y>x+1$ and $y<-x+1$
(2) $(x-1)^{2}+(y-1)^{2} \leqq 4$
(3) $(x+2)^{2}+(y-1)^{2} \geqq 4$ or $(x-1)^{2}+(y+3)^{2} \leqq 9$
[2] Let $P(x, y)$ be a point moving in the region defined by $y-2 x+4 \geqq 0, y+3 x-5 \geqq$ $0,2 y+x-12 \leqq 0$.
(1) Find the maximum and minimum of $x+y$.
(2) Find the maximum and minimum of $x^{2}+y$.
[14] Draw the region defined by the following inequalities.
(1) $(x+y-1)(2 x+y) \leqq 0$
(2) $(x-1)^{2}+(y-1)^{2} \geqq 4$
(3) $(x+2)^{2}+(y-1)^{2} \geqq 4$ and $y \leqq-x+1$
[15] When a point $P(x, y)$ moves in the region drfined by $x-2 \leqq y \leqq-x^{2}$, find a maximum and minimum of $x+y$.

Example 9
[1] Find the equation of the trace of the point P, which satisfies the following condition.
(1) Let $A(1,1)$ and $B(-1,-1) . P A: P B=2: 1$.
(2) P is the same distance from the two lines $y=-x+2$ and $y=2 x-1$.
[2] Let Q be the point moving on the circle $x^{2}+y^{2}=4$. Find the equation of the trace of the point P, which divides internally the segment attaching Q and $A(7,0)$ in the ratio $3: 1$.
[16] Find the equation of the trace of the point P, which satisfies the following condition.
(1) P is the same distance from $A(1,1)$ and $B(-1,-1)$.
(2) P is the same distance from $A(0,1)$ and the line $y=-1$.
[17] Find the equation of trace of the point $Q(p+q, p q)$, when the point $P(p, q)$ is moving on the line $y=2 x$.

Exercises

[1] Find the equation of the line which passes through $(2,0)$ and the intersection go the following two lines.

$$
3 x-2 y-4=0, \quad 4 x+3 y-10=0
$$

[2] Let $a>0$ be a real number, and the line $\ell: y=\frac{4}{3} x$ be tangent to the circle C : $(x-a)^{2}+y^{2}=9^{2}$.
(1) Find the value of a.
(2) Let C_{1} be a circle different from C, whose centre id on the x-axis and tangent both to ℓ and C. Find the centre and radius of C_{1}.
[3] Let a, b be real numbers and suppose that $y=x^{3}-3 a x^{2}-3 b x$ has its extrema at $x=p$ and $x=q$.
(1) Draw the region of points (a, b) satisfying the condition $-1 \leqq p \leqq 0$ and $1 \leqq q \leqq 2$.
(2) When the point (a, b) moves in the region (1), find a maximum and minimum of $a+b$.
[4] Given $C: y=k-x^{2}$ を C, where $k>\frac{1}{2}$.
Let $P\left(t, k-t^{2}\right)$ be a moving point on C and $t \geqq 0$. Let P_{0} be the point P, when the length of $O P$ is minimum.
(1) Find P_{0}.
(2) Prove that the line $O P_{0}$ is perpendicular to the tangent of C at P_{0}.
(3) When the gradient of $O P_{0}$ is 1 , find k.
(4) When the gradient of $O P_{0}$ is 1 , find the radius of the circle, which is in the first quadrant and tangent to x-axis, y-axis and C.
[5] Let D be the region defined by $|x+2 y|+|2 x-y| \leqq 1$.
(1) Draw D.
(2) Find the maximum and minimum of $x+y$ on D.
(3) Find the maximum and minimum of $|x|+|y|$ on D.
[6] Let C be the circle whose centre is the origin O and its radius is 1 , and suppose $P(p, q)$ satisfies the condition $p^{2}+q^{2}>1$. Let $T(s, t)$ be the tangent point, where the tangent line of C passes through the point P. Let D be the circle, whose centre is P and passes through T and suppose D passing through the point $A(a, 0)$.
(1) Prove that $(a-p)^{2}=p^{2}-1$.
(2) When $0<a<1$ show that $p>1$ and write down a by using p.
[7] Let C be the circle whose centre is $P(0,1)$ and its radios is 1 . Let a be a real number satisfying $0<a<1$, and let Q, R be the intersection of $y=a(x+1)$ and C.
(1) Find the wire $S(a)$ of the triangle $\triangle \mathrm{PQR}$.
(2) Find a, when $S(a)$ is the maximum.
[8] Given three lines

$$
\ell: x+y=0, \quad \ell_{1}: a x+y=2 a+2, \quad \ell_{2}: b x+y=2 b+2
$$

where a, b are real numbers.
(1) The line ℓ_{1} always passes through the point P no matter what number a. Find P.
(2) Find the condition of a, b, when the three lines ℓ, ℓ_{1}, ℓ_{2} make a triangle.
(3) Suppose a, b satisfy (2). Find the range of a, b, when $(1,1)$ is in the triangle (2), and draw the region of (a, b).

