Hokkaido University

[1]

Assume that p is a negative real number. Given that three points $A(-1,2,0), B(2,-2,1)$ and $P(p,-1,2)$ and let α be the plane passing through three points A, B and P.
Let Q be a point on the plane α such that $P Q \perp \alpha$.
(1) Express the coordinates of the point Q with p.
(2) Find the range of the value p such that the point Q is either in the triangle $O A B$ or on the sides of the triangle $O A B$.

[2]

Given that $a_{n}=n(n+1)$, where n is a positive integer. Let d_{n} be the largest common divisor of a_{n} and a_{n+2}.
(1) Show that d_{n} is an even integer.
(2) Show that d_{n} is not divisible by 8 .
(3) Given that a prime number p which is larger than or equal to 5 . Show that d_{n} is not divisible by p.
(4) Show that $d_{n} \leq 12$ and find one example of n such that $d_{n}=12$.

[3]

Let t be a real number such that $0<t<1$. Given that a function $f(x)$ defined at $x \neq 0, x \neq \frac{1}{t}$ as

$$
f(x)=\frac{x+t}{x(1-t x)}
$$

(1) Show that $f^{\prime}(x)$ has exactly one local maximum and one local minimum.
(2) Let α and β be real numbers such that $f(\alpha)$ is the local maximum and $f(\beta)$ is the local minimum. Given that two points $P(\alpha, f(\alpha))$ and $Q(\beta, f(\beta))$. Find the equation of the loci of midpoint M of $P Q$, when t varies between $0<t<1$.

[4]

Let n be a integer larger than or equal to 3 . There are two boxes X and Y and each box has n cards numbers from 1 to n.
The person A pick one card out from the box X, and the number on this card is the person A's point. The person B pick one card out from the box Y, and if the number on this card is between 3 and n then this number is the person B's point but if the number of the card is either 1 or 2 , the card pull back into the box Y and pick again one card, whose number is the person B's point.
(1) Let $m \leq n$. Find the probability that the person B's point is m.
(2) Find the probability that the person B's point is larger than the person A's point.

[5]

Let $f(x)$ be a function which is continuous in the interval $0 \leq x \leq \pi$. And we define a sequence $f_{1}(x), f_{2}(x), \cdots$ as

$$
\begin{aligned}
& f_{1}(x)=f(x) \\
& f_{n+1}(x)=2 \cos x+\frac{2}{\pi} \int_{0}^{\pi} f_{n}(t) \sin (x-t) d t \quad(n=1,2,3, \cdots)
\end{aligned}
$$

And given that

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f_{n}(t) \sin t d t, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f_{n}(t) \cos t d t
$$

(1) Express a_{n+1} and b_{n+1} with a_{n} and b_{n}.
(2) Let $c_{n}=a_{n}-1$. Show that $c_{n+2}=-c_{n}$ and therefore express c_{n} with a_{1} and b_{1}.
(3) Find one example of $f(x)$ such that a_{n} and b_{n} are independent to the value n.

