
5 Hyperbolic Functions

5.1 Hyperbolic Functions

The hyperbolic functions are defined as:

Definition� �
coshx =

ex + e−x

2
, sinhx =

ex − e−x

2

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x� �
coshmeans ”hyperbolic cosine”, sinhmeans ”hyperbolic sine” and tanhmeans
”hyperbolic tangent”.

We may also define as:

sechx =
1

coshx
, cosechx =

1

sinhx
, cothx =

1

tanhx

As their names, the hyperbolic functions resemble the trigonometric functions.

The trigonometric functions are defined on the unit circle x2 + y2 = 1 as:
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x2 + y2 = 1

In the diagram above, let A be the point whose coordinates are (1, 0), and let
P be a point on the circle x2 + y2 = 1 such that ∠POA = θ.
( or we may say that let P be a point on the circle x2 + y2 = 1 such that the

area of the sector OPA is
1

2
θ)

Then we define cos θ as the x-coordinate of the point P
and sin θ as the y-coordinate of the point P .



The hyperbolic functions are defined on the hyperbolic function x2 − y2 = 1
as:
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x2 − y2 = 1

In the diagram above, let P be a point on the hyperbolic curve x2−y2 = 1 such
that the area of the region surrounded by the segment OP , the x-axis and the

curve x2 = y2 = 1 is
1

2
θ.

Then we define cosh θ as the x-coordinate of the point P and sinh θ as the
y-coordinate of the point P .

Since the trigonometric functions are based on the circle x2 + y2 = 1,

cos2 θ + sin2 θ = 1

And the hyperbolic functions are based on the hyperbolic function x2 − y2 = 1,
then

cosh2 θ − sinh2 θ = 1

Based on these formulae, the formulae about hyperbolic functions resemblethe
formulae about trigonometric functions except their signs.



5.2 The graphical representations of Hyperbolic Functions

(I)

y = coshx =
ex + e−x

2

From the graphical representations of the curves y = ex and y = e−x, we
cam sketch the curve of y = coshx.

Let A and B be points on the curves y = ex and y = e−x respectively
whose x-coordinate are the same. Let P be the midpoint of the segment
AB, then the loci of the point P is the curve y = coshx.

Since

cosh(−x) =
e−x + ex

2
= coshx,

the function coshx is an even function.
(Its graphical representation is symmetry with respect to the y-axis.)
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(II)

y = sinhx =
ex − e−x

2

Let A and B be points on the curves y = ex and y = −e−x respectively
whose x-coordinate are the same. Let P be the midpoint of the segment
AB, then the loci of the point P is the curve y = sinhx.

Since

sinh(−x) =
e−x − ex

2
= −ex − e−x

2
= − sinhx,

the function sinhx is an odd function.
(Its graphical representation is symmetry with respect to the origin O.)
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(III)

y = tanhx =
ex − e−x

ex + e−x

Since

lim
x→∞

tanhx = lim
x→∞

ex − e−x

ex + e−x

= lim
x→∞

1− e−2x

1 + e−2x

= 1

and

lim
x→−∞

tanhx = lim
x→−∞

ex − e−x

ex + e−x

= lim
x→−∞

e2x − 1

e2x + 1

= −1

the lines y = 1 and y = −1 are asymptotes of the curve y = tanhx.

tanh(−x) =
e−x − ex

e−x + ex
= −ex − e−x

ex + e−x
= − tanhx

Then tanhx is an odd function.
(Its graphical representation is symmetry with respect to the origin O.)
As

d

dx
tanhx =

1

cosh2 x
> 0,

tanhx is strictly increasing.
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5.3 Formulae about Hyperbolic Functions

As the trigonometric functions,there are similar formulae for the hyperbolic
functions.
The formulae 1 are the basic ones.

Formulae 1� �
cosh2 − sinh2 = 1,

1− tanh2 x =
1

cosh2 x
= sech2 x� �

Proof

cosh2 − sinh2 =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
(e2x + 2 + e−2x)− (e2x − 2 + e−2x)

4

=
4

4
= 1

1− tanh2 x = 1− sinh2 x

cosh2 x

=
cosh2 x− sinh2 x

cosh2 x

=
1

cosh2 x

The formulae 2 look like the addition formulae and double angle formulae
for trigonometric ones.

Formulae 2� �
sinh(x+ y) = sinhx cosh y + coshx sinh y

cosh(x+ y) = coshx cosh y + sinhx sinh y

sinh 2x = 2 sinhx coshx

cosh 2x = cosh2 x+ sinh2 x = 1 + 2 sinh2 x = 2 cosh2 x− 1� �



Proof

sinhx cosh y + coshx sinh y

=
ex − e−x

2
· e

y + e−y

2
+

ex + e−x

2
· e

y − e−y

2

=
exey + exe−y − e−xey − e−xe−y

4
+

exey − exe−y + e−xey − e−xe−y

4

=
exey − e−xe−y

2

=
ex+y − e−(x+y)

2
= sinh(x+ y)

coshx cosh y + coshx cosh y

=
ex + e−x

2
· e

y + e−y

2
+

ex − e−x

2
· e

y − e−y

2

=
exey + exe−y + e−xey + e−xe−y

4
+

exey − exe−y − e−xey + e−xe−y

4

=
exey + e−xe−y

2

=
ex+y + e−(x+y)

2
= cosh(x+ y)

sinh 2x = sinh(x+ x)
= sinhx coshx+ coshx sinhx
= 2 sinhx coshx

cosh 2x = cosh(x+ x) = cosh2 x+ sinh2 x

= (1 + sinh2 x) + sinh2 x = 1 + 2 sinh2 x

= 1 + 2(cosh2 x− 1) = 2 cosh2 x− 1

From formulae about cosh 2x, we can deduce the formulae:

Formulae 3� �
cosh2 x =

cosh 2x+ 1

2

sinh2 x =
cosh 2x− 1

2� �
Looks like the half angle formulae for the trigonometric functions.



5.4 Inverse Hyperbolic Functions

Since hyperbolic functions are defined by the exponential functions, its inverse
functions are defined by the inverse function of exponential functions: logarith-
mic functions.

Inverse hyperbolic functions� �
arcoshx = log(x+

√
x2 − 1) (x ≥ 1)

arsinhx = log(x+
√
x2 + 1)

artanhx =
1

2
log

(
1 + x

1− x

)
(|x| < 1)� �

Proof

Let y = arcoshx, then x = cosh y.

x =
ey + e−y

2

2x = ey + e−y

e2y − 2xey + 1 = 0

Then
ey = x±

√
x2 − 1

Since y ≥ 0,

ey = x+
√

x2 − 1

Then
y = ln(x+

√
x2 − 1)

Hence
arcoshx = ln(x+

√
x2 − 1) (x ≥ 1)

We leave another two inverse functions as an exercise:

Exercise:

Show that arsinhx = ln(x+
√
x2 + 1) and artanhx =

1

2
ln

(
1 + x

1− x

)
.



5.5 Differentiation and Integration of Hyperbolic Func-
tions

Differentiation of hyperbolic functions� �
d

dx
(coshx) = sinhx

d

dx
(sinhx) = coshx

d

dx
(tanhx) =

1

cosh2 x
= sech2 x� �

Proof

d

dx
(coshx) =

d

dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinhx

d

dx
(sinhx) =

d

dx

(
ex − e−x

2

)
=

ex + e−x

2
= coshx

d

dx
(tanhx) =

d

dx

(
sinhx

coshx

)
=

(sinhx)′ coshx− sinhx(coshx)′

cosh2 x

=
cosh2 x− sinh2 x

cosh2 x

=
1

cosh2 x



Differentiation of inverse hyperbolic functions� �
d

dx
(arcoshx) =

1√
x2 − 1

d

dx
(arsinhx) =

1√
x2 + 1

d

dx
(artanhx) =

1

1− x2� �
Proof

Let y = arcoshx, then x = cosh y.
Then

d

dx
(arcoshx) =

1(
dx
dy

)
=

1

sinh y

=
1√

cosh2 y − 1

=
1√

x2 − 1

Alternative proof:

d

dx
(arcoshx) =

d

dx
(log(x+

√
x2 − 1))

=
1

x+
√
x2 − 1

·
(
1 +

2x

2
√
x2 − 1

)
=

1

x+
√
x2 − 1

·
√
x2 − 1 + x√
x2 − 1

=
1√

x2 − 1

Exercise:

Show that
d

dx
(arsinhx) =

1√
x2 + 1

and
d

dx
(artanhx) =

1

1− x2
.



Integration formulae 1� �∫
coshx dx = sinhx+ C∫
sinhx dx = coshx+ C∫
tanhx dx = log(coshx) + C� �

From the differentiation formulae we can deduce these integration formulae.

Integration formulae 2� �
∫

1

a2 + x2
dx =

1

a
arctan

(x
a

)
+ C (|x| < a)∫

1

a2 − x2
dx =

1

a
artanh

(x
a

)
+ C =

1

2a
log

∣∣∣∣a+ x

a− x

∣∣∣∣ (|x| < a)∫
1√

a2 − x2
dx = arcsin

(x
a

)
+ C∫

1√
x2 + a2

dx = arsinh
(x
a

)
+ C = log(x+

√
x2 + a2) + C∫

1√
x2 − a2

dx = arcosh
(x
a

)
+ C = log(x+

√
x2 − a2) + C (x > a)

� �
When you differentiate the right hand side of each formula, you will get the
function of left hand side.

When you integrate directly such functions, for example, if you find the term
x2 + a2 in your function, you will try to use substitution x = a tan θ.

For example we shall calculate the integration

∫
1√

x2 + a2
dx.

Substitute x = a tan θ,

dx

dθ
=

a

cos2 θ
, dx =

adθ

cos2 θ



Therefore ∫
1√

x2 + a2
dx =

∫
1√

a2 tan2 θ + a2
adθ

cos2 θ

=

∫
1

a
√
tan2 θ + 1

adθ

cos2 θ

=

∫
1√
1

cos2 θ

dθ

cos2 θ

=

∫
cos θ

cos2 θ
dθ

=

∫
cos θ

1− sin2 θ
dθ

Sunstitute u = sin θ,
du

dθ
= cos θ, dθ =

du

cos θ

Then ∫
cos θ

1− sin2 θ
dθ =

∫
cos θ

1− u2

du

cos θ

=

∫
1

1− u2
du

=

∫
1

(1 + u)(1− u)
du

=
1

2

∫ (
1

1 + u
+

1

1− u

)
du

=
1

2
log |1 + u| − log |1− u|+ C

=
1

2
log

∣∣∣∣1 + u

1− u

∣∣∣∣+ C

=
1

2
log

∣∣∣∣1 + sin θ

1− sin θ

∣∣∣∣+ C

From x = a tan θ,

cos2 θ =
1

1 + tan2 θ
=

1

1 + x2

a2

=
a2

x2 + a2

sin θ =
√
1− cos2 θ =

√
1− a2

x2 + a2
=

x√
x2 + a2



Then ∫
cos θ

1− sin2 θ
dθ =

1

2
log

∣∣∣∣1 + sin θ

1− sin θ

∣∣∣∣+ C

=
1

2
log

∣∣∣∣∣1 +
x√

x2+a2

1− x√
x2+a2

∣∣∣∣∣+ C

=
1

2
log

∣∣∣∣∣
√
x2 + a2 + x√
x2 + a2 − x

∣∣∣∣∣+ C

=
1

2
log

∣∣∣∣∣ (
√
x2 + a2 + x)2

a2

∣∣∣∣∣+ C

= log

∣∣∣∣∣
√
x2 + a2 + x

a

∣∣∣∣∣+ C

= log(
√
x2 + a2 + x)− log a+ C

= log(x+
√

x2 + a2) + C

as C is an arbitrary constant.

If you find the term a2−x2 in your function, you will try substitution x = a sin θ.

For calculate the integral

∫
1√

a2 − x2
dx,

Sunstitute x = a sin θ,

dx

dθ
= a cos θ, dx = a cos θ dθ

Then ∫
1√

a2 − x2
dx =

∫
1√

a2 − a2 sin2 θ
a cos θ dθ

=

∫
a cos θ

a
√

1− sin2 θ
dθ

=

∫
a cos θ

a
√
cos2 θ

dθ

=

∫
dθ

= θ + C

= arcsin
(x
a

)
+ C



5.6 Hyperbolic Functions vs Trigonometric Functions

When we use complex variables, we shall find the similarities between hyper-
bolic functions and trigonometric functions.

From the Euler’s formulae:

eix = cosx+ i sinx

e−ix = cosx− i sinx

Then we have

cosx =
1

2
(eix + e−ix)

and

sinx =
1

2i
(eix − e−ix)

From this result, we shall define the trigonometric functions of a complex vari-
ables as:

Definition� �
cos z =

1

2
(eiz + e−iz) and sin z =

1

2i
(eiz − e−iz)

where z is a complex number.� �
These cos z and sin z satisfy the formulae about the real variable trigonometric
functions, as well as the formulae about the differentiation and the integration.

Example 1� �
Show that

cos(ix) = coshx and sin(ix) = i sinhx� �
Answer:

cos(ix) =
1

2
(ei(ix) + e−i(ix)) =

1

2
(e−x + ex) = coshx

and

sin(ix) =
1

2i
(ei(ix) − e−i(ix)) =

1

2i
(e−x − ex) = −1

i
sinhx = i sinhx



We define the hyperbolic functions of a complex variables as:

Definition� �
cosh z =

1

2
(ez + e−z) and sinh z =

1

2
(ez − e−z)

where z is a complex number.� �
Example 2� �
Show that

cosh(ix) = cosx and sinh(ix) = i sinx� �
Answer

cosh(ix) =
1

2
(eix + e−ix) = cosx

and

sinh(ix) =
1

2
(eix − e−ix) = i · 1

2i
(eix − e−ix) = i sinx

Example 3� �
Show that

cos(x+ iy) = cosx cosh y − i sinx sinh y

sin(x+ iy) = sinx cosh y + i cosx sinh y� �
Answer

cos(x+ iy) = cosx cos(iy)− sinx sin(iy)

= cosx cosh y − sinx(i sinh y)

= cosx cosh y − i sinx sinh y

sin(x+ iy) = sinx cos(iy) + cosx sin(iy)

= sinx cosh y + cosx(i sinh y)

= sinx cosh y + i cosx sinh y

In this example 3, if you put x = 0, you will find the result of the example
1.



Exercise

[1] Show that the following formulae:

(i) tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y

(ii) tanh 2x =
2 tanhx

1 + tanh2 x

(iii) cosh 3x = −3 coshx+ 4 cosh3 x

(iv) sinh 3x = 3 sinhx+ 4 sinh3 x

[2] Show, by using substitution x = a sinhu, that the integration formula∫
1√

x2 + a2
= arsinh

(x
a

)
+ C

[3] Solve the equation
4 coshx+ sinhx = 8

giving your answer as natural logarithms.

[4] (i) Starting from the definitions of coshx and sinhx in terms of expo-
nentials, prove that

cosh 2x = 1 + 2 sinh2 x

(ii) Solve the equation

cosh 2x− 3 sinhx = 15

giving your answers as exact logarithms.

[5] (i) Find the values of a, b and c such that

4x2 + 4x+ 17 = a(x+ b)2 + c

(ii) Find the exact value of∫ 3
2

− 1
2

1

4x2 + 4x+ 17
dx



[6]
f(x) = 5 coshx− 4 sinhx

(i) Show that f(x) =
1

2
(ex + 9e−x).

(ii) Solve the equation f(x) = 5

(iii) Show that ∫ ln 3

1
2 ln 3

1

5 coshx− 4 sinx
dx =

π

18

[7] Given that y = sinhn−1 x coshx.

(i) Show that
dy

dx
= (n− 1) sinhn−2 x+ n sinhn x.

In is defined by

In =

∫ arsinh 1

0

sinhn x dx for n ≥ 0

(ii) Using the result in part (i); or otherwise, show that

nIn =
√
2− (n− 1)In−2, (n ≥ 2)

(iii) Hence find the value of I4.

[8] In this question, you may use without proof the results

4 cosh3 y − 3 cosh y = cosh 3y and arcosh y = ln(y +
√

y2 − 1)

Show that the equation x3−3a2x = 2a3 coshT is satisfied by 2a cosh

(
1

3
T

)
and hence that, if c2 ≥ b3 > 0, one of the roots of the equation x3−3bx =

2c is u+
b

u
, where u = (c+

√
c2 − b3)

1
3 .

Show that the other two roots of the equation x3 − 3bx = 2c are the roots

of the quadratic equation x2 + (u+
b

u
)x+ u2 +

b2

u2
− b = 0, and find these

roots in terms of u, b and ω, where ω =
1

2
(−1 + i

√
3).

Solve completely the equation x3 − 6x = 6.



[9] The denite integrals T, U, V and X are dened by

T =

∫ 1
2

1
3

artanh t

t
dt U =

∫ ln 3

ln 2

u

2 sinhu
du

V = −
∫ 1

2

1
3

ln v

1− v2
dv X =

∫ 1
2 ln 3

1
2 ln 2

ln(cothx) dx

Show, without evaluating any of them, that T, U, V and X are all equal.

[10] In this question, a is a positive constant.

(i) Express cosh a in terms of exponentials.
By using partial fractions, prove that∫ 1

0

1

x2 + 2x cosh a+ 1
dx =

a

2 sinh a

(ii) Find, expressing your answers in terms of hyperbolic functions,∫ ∞

1

1

x2 + 2x sinh a− 1
dx

and ∫ ∞

0

1

x4 + 2x2 cosh a+ 1
dx

[11] Show, by finding R and γ, that A sinhx+ B coshx can be written in the
form R cosh(x + γ) if B > A > 0. Determine the corresponding forms in
the other cases that arise, for A > 0, according to the value of B.
Two curves have equations y = sechx and y = a tanhx+ b, where a > 0.

(i) In the case b > a, show that if the curves intersect then the x-
coordinates of the points of intersection can be written in the form

± arcosh

(
1√

b2 − a2

)
− artanh

a

b

(ii) Find the corresponding result in the case a > b > 0.

(iii) Find necessary and sufficient conditions on a and b for the curves to
intersect at two distinct points.

(iv) Find necessary and sufficient conditions on a and b for the curves
to touch and, given that they touch, express the y-coordinate of the
point of contact in terms of a.


