Kyoto University

(150min)
[1] (40pt)
Answer the following questions.
(1) Let $0<\theta<\frac{\pi}{2}$. Find the value θ such that $\cos \theta$ is not a rational number, but both $\cos 2 \theta$ and $\cos 3 \theta$ are rational numbers.
You may use the result that if p is a prime number then \sqrt{p} is not rational.
(2) Find the values of
(i) $\int_{0}^{\frac{\pi}{4}} \frac{x}{\cos ^{2} x} d x$
(ii) $\int_{0}^{\frac{\pi}{4}} \frac{d x}{\cos x}$
(1) Ler $x=\cos \theta$, then $0<x<1$ for $0<\theta<\frac{\pi}{2}$.

$$
\begin{gathered}
\cos 2 \theta=2 \cos ^{2} \theta-1=2 x^{2}-1 \\
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta=4 x^{3}-3 x
\end{gathered}
$$

Assume that x is not rational and that both $2 x^{2}-1$ and $4 x^{3}-3 x$ are rational.
Since $2 x^{2}-1$ is rational, $x^{2}=\frac{\left(2 x^{2}-1\right)+1}{2}$ is also rational.
Then $4 x^{2}-3$ is rational.
Since $4 x^{3}-3 x=x\left(4 x^{2}-3\right)$ is rational and x is not rational, the rational number $4 x^{2}-3$ must be 0 .

$$
\begin{gathered}
4 x^{2}-3=0 \\
x^{2}=\frac{3}{4}
\end{gathered}
$$

$x=\frac{\sqrt{3}}{2} \quad$ which is not rational, as required.

$$
\cos \theta=\frac{\sqrt{3}}{2}
$$

Hence

$$
\theta=\frac{\pi}{6}
$$

(2) (i)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{x}{\cos ^{2} x} d x & =\int_{0}^{\frac{\pi}{4}} x(\tan x)^{\prime} d x \\
& =[x \tan x]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan x d x \\
& =\frac{\pi}{4} \tan \frac{\pi}{4}-[-\log |\cos x|]_{0}^{\frac{\pi}{4}} \\
& =\frac{\pi}{4}+\log \left(\cos \frac{\pi}{4}\right)-\log (\cos 0) \\
& =\frac{\pi}{4}+\log \frac{\sqrt{2}}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{d x}{\cos x} & =\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{\cos ^{2} x} d x \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{1-\sin ^{2} x} d x
\end{aligned}
$$

Substitute $u=\sin x$, then $\frac{d u}{d x}=\cos x$, therefore $d x=\frac{d u}{\cos x}$.

And | x | 0 | \rightarrow | $\frac{\pi}{4}$ |
| :---: | :---: | :---: | :---: |
| u | 0 | \rightarrow | $\frac{1}{\sqrt{2}}$ |

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{d x}{\cos x} & =\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{1-\sin ^{2} x} d x \\
& =\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\cos x}{1-u^{2}} \frac{d u}{\cos x} \\
& =\int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{1-u^{2}} d u \\
& =\int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{(1+u)(1-u)} d u \\
& =\frac{1}{2} \int_{0}^{\frac{1}{\sqrt{2}}}\left(\frac{1}{1+u}+\frac{1}{1-u}\right) d u \\
& =\frac{1}{2}\left([\log |1+u|-\log |1-u|]_{0}^{\frac{1}{\sqrt{2}}}\right) \\
& =\frac{1}{2}\left(\log \left(1+\frac{1}{\sqrt{2}}\right)-\log \left(1-\frac{1}{\sqrt{2}}\right)\right) \\
& =\frac{1}{2} \log \frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}} \\
& =\frac{1}{2} \log \frac{\sqrt{2}+1}{\sqrt{2}-1} \\
& =\frac{1}{2} \log (\sqrt{2}+1)^{2} \\
& =\log (\sqrt{2}+1)
\end{aligned}
$$

[2] (30pt)

Given that $f(x)=x^{3}+2 x^{2}+2$. Find all integers n such that both $|f(n)|$ and $|f(n+1)|$ are prime numbers.

You see that either n or $n+1$ is even.
If $x=2 k$ is an even number,

$$
f(2 k)=(2 k)^{3}+2(2 k)^{2}+2=8 k^{3}+8 k^{2}+2=2\left(4 k^{3}+4 k^{2}+1\right)
$$

is also an even number.
Then $|f(2 k)|$ is prime, if and only if $4 k^{3}+4 k^{2}+1=1$ or $4 k^{3}+4 k^{2}+1=-1$
Assume that $4 k^{3}+4 k^{2}+1=-1$,

$$
4 k^{3}+4 k^{2}=-2, \quad 4 k^{2}(k+1)=-2, \quad 2 k^{2}(k+1)=-1
$$

Since $2 k^{2}(k+1)$ is even and that -1 is odd, there are no such integer k.
Assume that $4 k^{3}+4 k^{2}+1=1$,

$$
\begin{gathered}
4 k^{3}+4 k^{2}=0, \quad 4 k^{2}(k+1)=0 \\
k=0, \quad \text { or } \quad k=-1
\end{gathered}
$$

Then

$$
2 k=0, \quad \text { or } \quad 2 k=-2
$$

Since

$$
\begin{gathered}
|f(-3)|=\left|(-3)^{3}+2(-3)^{2}+2\right|=|-27+18+2|=|-7|=7, \quad \text { then prime. } \\
|f(-2)|=\left|(-2)^{3}+2(-2)^{2}+2\right|=|-8+8+2|=|2|=2, \quad \text { then prime. } \\
|f(-1)|=\left|(-1)^{3}+2(-1)^{2}+2\right|=|-1+2+2|=|3|=3, \quad \text { then prime. } \\
|f(0)|=\left|0^{3}+2 \cdot 0^{2}+2\right|=|0+0+2|=|2|=2, \quad \text { then prime. } \\
|f(1)|=\left|1^{3}+2 \cdot 1^{2}+2\right|=|1+2+2|=|5|=5, \quad \text { then prime. }
\end{gathered}
$$

Hence the required integers n are

$$
n=-3,-2,-1,0
$$

[3] (35pt)

Let S be the area of an acute triangle $A B C$. Let Q be a point which divides internally in the ratio $t: 1-t$ of the side $A C$ and let P be a point which divides internally in the ratio $t: 1-t$ of the segment $B Q$, where t is a real number such that $0<t<1$. Find the area surrounded by the locus of the point P when t varies and the line $B C$ with respect to S.

We fix the coordinates system such that $A(v, w), B(0,0)$ and $C(u, 0)$ where u, v and w are positive numbers.
Then

$$
\overrightarrow{O Q}=\overrightarrow{O A}+\overrightarrow{A Q}=\overrightarrow{O A}+t \overrightarrow{A C}=\overrightarrow{O A}+t(\overrightarrow{O C}-\overrightarrow{O A})=(1-t) \overrightarrow{O A}+\overrightarrow{O C}
$$

Therefore

$$
\overrightarrow{O Q}=(1-t)\binom{v}{w}+\binom{u}{0}=\binom{(1-t) v+u}{(1-t) w}
$$

And

$$
\overrightarrow{O P}=t \overrightarrow{O Q}
$$

Then

$$
\overrightarrow{O P}=t\binom{(1-t) v+u}{(1-t) w}=\binom{t(1-t) v+t u}{t(1-t) w}
$$

Therefore the equation of the locus of the point P is given as

$$
\begin{gathered}
\left\{\begin{array}{l}
x=t(1-t) v+t u=(u+v) t-v t^{2} \\
y=t(1-t) w=w t-w t^{2}
\end{array}\right. \\
\frac{d x}{d t}=(u+v)-2 v t, \quad d x=((u+v)-2 v t) d t
\end{gathered}
$$

Hence the required area A is

$$
\begin{aligned}
A & =\int_{0}^{u} y d x \\
& =\int_{0}^{1}\left(w t-w t^{2}\right)((u+v)-2 v t) d t \\
& =\int_{0}^{1}\left(w(u+v) t+(-w(u+v)-2 v w) t^{2}+2 v w t^{3}\right) d t \\
& =\int_{0}^{1}\left(w(u+v) t-w(u+3 v) t^{2}+2 v w t^{3}\right) d t \\
& =w\left[\frac{1}{2}(u+v) t^{2}-\frac{1}{3}(u+3 v) t^{3}+\frac{1}{2} v t^{4}\right]_{0}^{1} \\
& =w\left(\frac{1}{2}(u+v)-\frac{1}{3}(u+3 v)+\frac{1}{2} v\right) \\
& =\frac{1}{6} u w
\end{aligned}
$$

Since $S=\frac{1}{2} u w$,

$$
A=\frac{1}{3} S
$$

[4] (30pt)
When we throw a die n times and let $X_{1}, X_{2}, \cdots, X_{n}$ be the consecutive number of face of a die. Find the probability satisfying the following condition (I) with respect to n. We assume that $X_{0}=0$.

Condition (I): Given that $1 \leq k \leq n$. There exist one and only one k such that $X_{k-1} \leq 4$ and $X_{k} \geq 5$.

The condition (I) means:
Before k, every number of the face of die are less than or equal to 4 , and after k, once X_{i+1} is less than or equal to 4 , after that every number of the face of die must be less than or equal to 4 .
Then

$$
\begin{array}{cc}
X_{0}=0, \\
X_{1} \leq 4, X_{2} \leq 4, \cdots, X_{k-1} \leq 4, & \text { probability }=\left(\frac{4}{6}\right)^{k} \\
X_{k} \geq 5, x_{k+1} \geq 5, \cdots X_{i} \geq 5, & \text { probability }=\left(\frac{2}{6}\right)^{i-k+1} \\
X_{i+1} \leq 4, X_{i+1} \leq 4, \cdots X_{n} \leq 4 & \text { probability }=\left(\frac{4}{6}\right)^{n-i}
\end{array}
$$

where $k \leq i \leq n$.
Therefore the required probability P is

$$
\begin{aligned}
P & =\sum_{k=1}^{n} \sum_{i=k}^{n}\left(\frac{4}{6}\right)^{k-1}\left(\frac{2}{6}\right)^{i-k+1}\left(\frac{4}{6}\right)^{n-i} \\
& =\sum_{k=1}^{n} \sum_{i=k}^{n} \frac{2^{n+k-i-1}}{3^{n}} \\
& =\sum_{k=1}^{n}\left(\frac{2^{n+k-1}}{3^{n}} \sum_{i=k}^{n} 2^{-i}\right) \\
& =\sum_{k=1}^{n}\left(\frac{2^{n+k-1}}{3^{n}} \frac{2^{-k}\left(1-2^{-(n-k+1)}\right)}{1-2^{-1}}\right) \\
& =\sum_{k=1}^{n}\left(\frac{2^{n}\left(1-2^{-n+k-1}\right)}{3^{n}}\right) \\
& =\sum_{k=1}^{n}\left(\frac{2^{n}-2^{k-1}}{3^{n}}\right) \\
& =n\left(\frac{2}{3}\right)^{n}-\left(\frac{1}{3}\right)^{n} \frac{\left(1-2^{n}\right)}{1-2} \\
& =\frac{n \cdot 2^{n}-2^{n}+1}{3^{n}} \\
& =\frac{(n-1) 2^{n}+1}{3^{n}}
\end{aligned}
$$

[5] (30pt)

Let five points A, B_{1}, B_{2}, B_{3} and B_{4} lie on the surface of the sphere whose radius is 1 and $B_{1} B_{2} B_{3} B_{4}$ forms a square which is the base of a pyramid $A B_{1} B_{2} B_{3} B_{4}$. Find the maximum volume of a pyramid $A B_{1} B_{2} B_{3} B_{4}$.

Let x be the distance from the center O of the sphere and the square $B_{1} B_{2} B_{3} B_{4}$.
Then the length of the diagonal of the square is given by $2 \sqrt{1-x^{2}}$.
The area of the square $B_{1} B_{2} B_{3} B_{4}$ is

$$
\frac{1}{2}\left(2 \sqrt{1-x^{2}}\right)^{2}=2\left(1-x^{2}\right)
$$

The height of the pyramid $A B_{1} B_{2} B_{3} B_{4}$ is $1+x$.
Then the volume V of the pyramid $A B_{1} B_{2} B_{3} B_{4}$ is $1+x$ is

$$
\begin{gathered}
V=\frac{1}{3} \cdot 2\left(1-x^{2}\right) \cdot(1+x)=\frac{2}{3}\left(1+x-x^{2}-x^{3}\right) \\
\frac{d V}{d x}=\frac{2}{3}\left(1-2 x-3 x^{2}\right)=-\frac{2}{3}(3 x-1)(x+1)
\end{gathered}
$$

Then $\frac{d V}{d x}=0$, when $x=-1, \frac{1}{3}$
Since $0<x<1$, the variation of V is

x	0		$\frac{1}{3}$		1
$\frac{d V}{d x}$		+	0	-	
V		\nearrow	$\frac{64}{81}$	\searrow	

Hence the maximum volume of a pyramid $A B_{1} B_{2} B_{3} B_{4}$ is $\frac{64}{81}$.

[6] (35pt)

Find the smallest positive integer n such that $(1+i)^{n}+(1-i)^{n}>10^{10}$, where $i^{2}=-1$.

Since

$$
1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

and

$$
1-i=\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)
$$

then

$$
\begin{aligned}
(1+i)^{n}+(1-i)^{n} & =\left(\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^{n}+\left(\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)\right)^{n} \\
& =2^{\frac{n}{2}}\left(\cos \frac{n \pi}{4}+i \sin \frac{n \pi}{4}\right)+2^{\frac{n}{2}}\left(\cos \frac{n \pi}{4}-i \sin \frac{n \pi}{4}\right) \\
& =2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}
\end{aligned}
$$

For $\cos \frac{n \pi}{4}$ is positive, $n=8 k, n=8 k+1$ or $n=8 k+7$, where k is a non-negative integer.
(i) When $n=8 k$,
$\cos \frac{n \pi}{4}=\cos \frac{8 k \pi}{4}=\cos 2 k \pi=1$. Then

$$
\begin{gathered}
(1+i)^{n}+(1-i)^{n}>10^{10} \\
2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}>10^{10} \\
2^{\frac{8 k}{2}+1}>10^{10} \\
2^{4 k+1}>10^{10} \\
\log _{10} 2^{4 k+1}>\log _{10} 10^{10} \\
(4 k+1) \log _{10} 2>10 \\
k>\frac{1}{4}\left(\frac{10}{\log _{10} 2}-1\right) \\
k>8.05
\end{gathered}
$$

Therefore the smallest integer k is $k=9$.
Then $n=8 k=72$.
(ii) When $n=8 k+1$,
$\cos \frac{n \pi}{4}=\cos \frac{(8 k+1) \pi}{4}=\cos \left(2 k \pi+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
Then

$$
\begin{gathered}
(1+i)^{n}+(1-i)^{n}>10^{10} \\
2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}>10^{10} \\
2^{\frac{8 k+1}{2}+1} 2^{-\frac{1}{2}}>10^{10} \\
2^{4 k+1}>10^{10}
\end{gathered}
$$

$$
\begin{gathered}
\log _{10} 2^{4 k+1}>\log _{10} 10^{10} \\
(4 k+1) \log _{10} 2>10 \\
k>\frac{1}{4}\left(\frac{10}{\log _{10} 2}-1\right) \\
k>8.05
\end{gathered}
$$

Therefore the smallest integer k is $k=9$.
Then $n=8 k+1=73$.
(iii) When $n=8 k+7$,
$\cos \frac{n \pi}{4}=\cos \frac{(8 k+7) \pi}{4}=\cos \left(2 k \pi+\frac{7 \pi}{4}\right)=\frac{1}{\sqrt{2}}$.
Then

$$
\begin{gathered}
(1+i)^{n}+(1-i)^{n}>10^{10} \\
2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}>10^{10} \\
2^{\frac{8 k+7}{2}+1} 2^{-\frac{1}{2}}>10^{10} \\
2^{4 k+4}>10^{10} \\
\log _{10} 2^{4 k+4}>\log _{10} 10^{10} \\
(4 k+4) \log _{10} 2>10 \\
k>\frac{1}{4}\left(\frac{10}{\log _{10} 2}-4\right) \\
k>7.30
\end{gathered}
$$

Therefore the smallest integer k is $k=8$.
Then $n=8 k+7=71$.
Hence the smallest positive integer n is

$$
n=71
$$

