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Show that

5.4 < log4 2022 < 5.5

You may use the result that 0.301 < log10 2 < 0.3011.� �
Since 2000 < 2022 < 2048,

log4 2000 < log4 2022 < log4 2048

log4 2000 =
log10 2000

log10 4

=
log10 2 + log10 1000

log10 2
2

=
log10 2 + log10 10

3

2 log10 2

=
log10 2

2 log10 2
+

log10 10
3

2 log10 2

=
1

2
+

3 log10 10

2 log10 2

=
1

2
+

3

2 log10 2

Since log10 2 < 0.3011,

3

2 log10 2
>

3

2× 0.3011
>

3

0.6022

Then

1

2
+

3

2 log10 2
> 0.5 +

3

0.6022
= 0.5 + 4.98 · · · = 5.48 · · · > 5.4

i.e. log4 2000 > 5.4.
Hence

5.4 < log4 2000 < log4 2022



And

log4 2048 =
log10 2048

log10 4

=
log10 2

11

log10 2
2

=
11 log10 2

2 log10 2

=
11

2
= 5.5

Then

log4 2022 < log4 2048 = 5.5

Therefore

5.4 < log4 2022 < 5.5
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In a box there are n cards that each card is written one of the numbers
from 1 to n. Suppose that n ≥ 5 and each card has a different number.
Pick three cards randomly from the box and letX, Y and Z the numbers
on these three cards, where X < Y < Z.
Find the probability such that Y −X ≥ 2 and Z − Y ≥ 2.� �

The complimentary event such that Y −X ≥ 2 and Z − Y ≥ 2 is the event
such that

Y −X < 2 or Z − Y < 2

The events such that Y −X < 2 are

(1, 2, 3), (1, 2, 4), (1, 2, 5), · · · , (1; 2, n)

(2, 3, 4), (2, 3, 5), · · · , (2, 3, n)

· · · · · · · · ·

(n− 2, n− 1, n)

Then (n− 2) + (n− 3) + · · ·+ 1 =
1

2
(n− 1)(n− 2) events.

And the events such that Z − Y < 2 are

(n, n− 1, n− 2), (n, n− 1, n− 3), (n, n− 1, n− 4), · · · , (n, n− 1, 1)

(n− 1, n− 2, n− 3), (n− 1, n− 2, n− 4), · · · , (n− 1, n− 2, 1)

· · · · · · · · ·

(3, 2, 1)

Then (n− 2) + (n− 3) + · · ·+ 1 =
1

2
(n− 1)(n− 2) events.

Among these events

(1, 2, 3), (2, 3, 4), · · · , (n− 2, n− 1, n)

are counted twice. Then the number of events such that Y −X < 2 or Z−
Y < 2 are
1

2
(n−1)(n−2)+

1

2
(n−1)(n−2)−(n−2) = (n−1)(n−2)−(n−2) = (n−2)2

Hence the probability such that Y −X ≥ 2 and Z − Y ≥ 2 is

1− (n− 2)2

nC3
= 1− (n− 2)2

n(n−1)(n−2)
3!

= 1− 6(n− 2)2

n(n− 1)(n− 2)
= 1− 6(n− 2)

n(n− 1)

=
n(n− 1)− 6(n− 2)

n(n− 1)
=

n2 − 7n+ 12

n(n− 1)
=

(n− 3)(n− 4)

n(n− 1)
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Let n be a natural number.
Find the greatest common divisor An of three integers n2 + 2, n4 + 2
and n6 + 2.� �

Let d be a common factor of n2 + 2 and n4 + 2.
Then we can write that

n2 + 2 = dX and n4 + 2 = dY where X and Y are integers

Since n4 + 2 = (n2 + 2)(n2 − 2) + 6 = dY ,

dX(n2 − 2) + 6 = dY

d(Y −X(n2 − 2)) = 6

Then d is a factor of 6, i.e. d = 1, 2, 3 or 6.
Therefore the GCD of n2 + 2, n4 + 2 and n6 + 2 is An = 1, 2, 3 or 6.

i) When n ≡ 0 (mod. 6),

n2 + 2 ≡ 02 + 2 ≡ 2 (mod. 6)

n4 + 2 ≡ 04 + 2 ≡ 2 (mod. 6)

n6 + 2 ≡ 06 + 2 ≡ 2 (mod. 6)

Then we can write down as

n2 + 2 = 6A+ 2 = 2(3A+ 1)

n4 + 2 = 6B + 2 = 2(3B + 1)

n6 + 2 = 6C + 2 = 2(3C + 1)

where A, B and C are integers.
Since 3A+ 1, 3B + 1 and 3C + 1 are not divisible by 3,
the GCD of n2 + 2, n4 + 2, n66 + 2 is 2.

ii) When n ≡ ±1 (mod. 6),

n2 + 2 ≡ 12 + 2 ≡ 3 (mod. 6)

n4 + 2 ≡ 14 + 2 ≡ 3 (mod. 6)

n6 + 2 ≡ 16 + 2 ≡ 3 (mod. 6)

Then we can write down as

n2 + 2 = 6A′ + 3 = 3(2A′ + 1)



n4 + 2 = 6B′ + 3 = 3(2B′ + 1)

n6 + 2 = 6C ′ + 3 = 3(2C ′ + 1)

where A′, B′ and C ′ are integers.
Since 2A′ + 1, 2B′ + 1 and 2C ′ + 1 are not divisible by 2, the GCD of
n2 + 2, n4 + 2, n6 + 2 is 3.

iii) When n ≡ ±2 (mod. 6),

n2 + 2 ≡ 22 + 2 ≡ 0 (mod. 6)

n4 + 2 ≡ 24 + 2 ≡ 0 (mod. 6)

n6 + 2 ≡ 26 + 2 ≡ 0 (mod. 6)

Then we can write down as

n2 + 2 = 6A′′

n4 + 2 = 6B′′

n6 + 2 = 6C ′′

where A′′, B′′ and C ′′ are integers.
Then the GCD of n2 + 2, n4 + 2, n6 + 2 is 6.

iv) When n ≡ 3 (mod. 6),

n2 + 2 ≡ 32 + 2 ≡ 5 (mod. 6)

n4 + 2 ≡ 34 + 2 ≡ 5 (mod. 6)

n6 + 2 ≡ 36 + 2 ≡ 5 (mod. 6)

Then we can write down as

n2 + 2 = 6A′′′ + 5

n4 + 2 = 6B′′′ + 5

n6 + 2 = 6C ′′′ + 5

where A′′′, B′′′ and C ′′′ are integers.
Since 6A′′′ + 5, 6B′′′ + 5 and 6C ′′′ + 5 are not divisible by 2, 3 or 6, the
GCD of n2 + 2, n4 + 2, n6 + 2 is 1.

Hence

An =


2 (n = 6k)
3 (n = 6k ± 1)
6 (n = 6k ± 2)
1 (n = 6k + 3)
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Given that a tetrahedron OABC, such that

OA = 4, OB = AB = BC = 3 and OC = AC = 2
√
3

Let P be a point on the side BC and let G be the centre of gravity of
the triangle OAP .

(1) Show that
−−→
PG ⊥

−→
OA

(2) When the point P moves on the segment BC, find the minimum
length of PG.� �

O

A

B

C

P

M

(1)

G

Let M be the midpoint of the segmentOA.

Then
−−→
PG =

2

3

−−→
PM .

Since 4OBC ≡ 4ABC (SSS condition),

∠OCB = ∠ACB

Then 4OCP ≡ 4ACP (SAS condition),

Therefore PO = PA

Hence the triangle POA is an isosceles triangle.

Since M is the midpoint of OA,

OA ⊥ PM

Hence
−−→
PG ⊥

−→
OA

(Note: SSS (side-side-side) means that three corresponding sides of two triangles

are equal in length.

SAS (side-angle-side) means that two corresponding sides of two triangles are equal

in length and included angles are equal in measurement.

Both conditions are determinations of congruence of two triangles.)



M B

C

P

G

(2) The points P and G are both on the same plane

which consists the triangle BCM .

Then PG is minimum when PG ⊥ BC

BM =
√
AB2 −AM2 =

√
32 − 22 =

√
5

CM =
√
OC2 −OM2 =

√
(2
√
3)2 − 22 = 2

√
2

And BC = 3

Using the cosine rule we have

BC2 = BM2 + CM2 − 2BM · CM cos∠BMC

32 = (
√
5)2 + (2

√
2)2 − 2 ·

√
5 · 2

√
2 cos∠BMC

cos∠BMC =
(
√
5)2 + (2

√
2)2 − 32

2 ·
√
5 · 2

√
2

=
1√
10

Then

sin∠BMC =
√
1− cos2∠BMC =

√
1− 1

10
=

3√
10

Hence the area of the triangle BCM is

(area of 4BCM) =
1

2
BM · CM sin∠BMC =

1

2
·
√
5 · 2

√
2 · 3√

10
= 3

On the other side,

(area of 4BCM) =
1

2
BC · PM =

3

2
PM

Then
3

2
PM = 3

PM = 2

Hence the minimum length of PG is

PG =
2

3
PM =

2

3
· 2 =

4

3
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Let S be the area of the region surrounded by the curve C : y =

cos3 x (0 ≤ x ≤ π

2
), x-axis and y-axis.

And let f(t) be the area of the rectangle whose vertices are

Q(t, cos3 t) (0 < t <
π

2
), O(0, 0), P (t, 0) and R(0, cos3 t).

(1) Find S.

(2) Prove that f(t) has the maximum at only one value of t, say t = α.

and show that f(α) =
cos4 α

3 sinα
.

(3) Show that
f(α)

S
<

9

16
.� �

(1)

S =

∫ π
2

0
cos3 tdt

=

∫ π
2

0
cos2 t cos tdt

=

∫ π
2

0
(1− sin2 t) cos tdt

Substituting u = sin t.

du

dt
= cos t, then du = cos tdt, and

t 0 → π
2

u 0 → 1

S =

∫ 1

0
(1− u2)du

=
[
u− 1

3
u3

]1
0

= 1− 1

3

=
2

3

(2) f(t) = t cos3 t, then

f ′(t) = cos3 t− 3t cos2 t sin t = cos2 t(cos t− 3t sin t)

Let g(t) = cos t− 3t sin t, then

g′(t) = − sin t− 3 sin t− 3t cos t = −(4 sin t+ 3t cos t)



Then for 0 < t <
π

2
, g′(t) < 0.

It means that g(t) is strictly decreasing in the interval 0 < t <
π

2
.

g(0) = 1 > 0 and g(
π

2
) = −3π

2
< 0

Then there is an unique value t = α such that g(α) = 0.
The variation table of f is

t 0 α π
2

f ′(t) + 0 −
f(t) ↗ (maximum) ↘

Hence f(t) has the maximum at only one value of t.

Since g(α) = 0,

cosα− 3α sinα = 0

α =
cosα

3 sinα

Then

f(α) = α cos3 α =
cosα

3 sinα
· cos3 α =

cos4 α

3 sinα

(3)
f(α)

S
=

cos4 α

3 sinα
· 3
2
=

cos4 α

2 sinα

Let h(x) =
cos4 x

2 sinx
,

h′(x) =
−4 cos3 x sin2 x− cos5 x

2 sin2 x
= −cos3 x(4 sin2 x+ cos2 x)

2 sin2 x

In the interval 0 < x <
π

2
, h′(x) < 0,

then h(x) is strictly decreasing in the interval 0 < x <
π

2

Since g(
π

6
) = cos

π

6
− 3 · π

6
sin

π

6
=

√
3

2
− π

4
=

2
√
3− π

4
> 0,

π

6
< α.

As h(x) is strictly decreasing, h(
π

6
) > h(α)

h(
π

6
) =

cos4 π
6

2 sin π
2

= (

√
3

2
)4 =

9

16

Hence h(α) <
9

16
, i.e.

f(α)

S
<

9

16
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Given that two sequences {xn} and {yn} such that

x1 = 0, xn+1 = xn + n+ 2 cos(
2πxn
3

) (n = 1, 2, 3, · · · )

y3m+1 = 3m, y3m+2 = 3m+ 2, y3m+3 = 3m+ 4 (m = 0, 1, 2, )

Find the n-th term of the sequence {xn − yn}.

� �
x2 = x1 + 1 + 2 cos(

2πx1
3

) = 0 + 1 + 2 cos 0 = 3

x3 = x2 + 2 + 2 cos(
2πx2
3

) = 3 + 2 + 2 cos 2π = 7

x4 = x3 + 3 + 2 cos(
2πx3
3

) = 7 + 3 + 2 cos(
14π

3
) = 10− 1 = 9

x5 = x4 + 4 + 2 cos(
2πx4
3

) = 9 + 4 + 2 cos 6π = 13 + 2 = 15

x6 = x5 + 5 + 2 cos(
2πx5
3

) = 15 + 5 + 2 cos 10π = 20 + 2 = 22

x7 = x6 + 6 + 2 cos(
2πx6
3

) = 22 + 6 + 2 cos(
44π

3
) = 28− 1 = 27

We can suppose that, for m = 0, 1, 2, · · · ,

x3m+1 ≡ 0 (mod. 3)

x3m+2 ≡ 0 (mod. 3)

x3m+3 ≡ 1 (mod. 3)

Prove this suggestion by induction.
Since x1 = 0 ≡ 0, x2 = 3 ≡ 0 and x3 = 7 ≡ 1 for mod.3, then the sugges-
tion is correct when m = 0.

Suppose that the suggestion is correct for m, then

x3(m+1)+1 = x3m+3 + (3m+ 3) + 2 cos(
2πx3m+3

3
)

Since x3m+3 ≡ 1 (mod. 3), cos(
2πx3m+3

3
) = −1

2
.

Then x3m+3 + 2 cos(
2πx3m+3

3
) = x3m+3 − 1 ≡ 0 (mod. 3).

Therefore

x3(m+1)+1 = x3m+3 + (3m+ 3)− 1 ≡ 0 (mod. 3)



x3(m+1)+2 = x3m+4 + (3m+ 4) + 2 cos(
2πx3m+4

3
)

Since x3m+4 = x3(m+1)+1 ≡ 0 (mod. 3),

2 cos(
2πx3m+4

3
) = 2 · 1 = 2

Then x3(m+1)+2 = x3m+4+(3m+4)+2 cos(
2πx3m+4

3
) ≡ 0+1+2 ≡ 3 ≡ 0 (mod. 3)

x3(m+1)+3 = x3m+5 + (3m+ 5) + 2 cos(
2πx3m+5

3
)

Since x3m+5 = x3(m+1)+2 ≡ 0 (mod. 3),

2 cos(
2πx3m+5

3
) = 2 · 1 = 2

Then x3(m+1)+3 = x3m+5+(3m+5)+2 cos(
2πx3m+5

3
) ≡ 0+2+2 ≡ 4 ≡ 1 (mod. 3)

Therefore we showed that

x3(m+1)+1 ≡ 0 (mod. 3)

x3(m+1)+2 ≡ 0 (mod. 3)

x3(m+1)+3 ≡ 1 (mod. 3)

Hence we proved, by induction, that

x3m+1 ≡ 0 (mod. 3)

x3m+2 ≡ 0 (mod. 3)

x3m+3 ≡ 1 (mod. 3)

for m = 0, 1, 2, · · · .

Now we shall see the n-th term of the sequence {xn}.



x3m+2 = x3m+1 + (3m+ 1) + 2 cos(
2πx3m+1

3
)

=
(
x3m + 3m+ 2 cos(

2πx3m

3
)
)
+ (3m+ 1) + 2 cos(

2πx3m+1

3
)

= x3m + 3m+ (3m+ 1) + 2
(
cos(

2πx3m

3
) + cos(

2πx3m+1

3
)
)

=
(
x3m−1 + (3m− 1) + 2 cos(

2πx3m−1

3
)
)

+ 3m+ (3m+ 1) + 2
(
cos(

2πx3m

3
) + cos(

2πx3m+1

3
)
)

= x3m−1 + (3m− 1) + 3m+ (3m+ 1)

+ 2
(
cos(

2πx3m−1

3
) + cos(

2πx3m

3
) + cos(

2πx3m+1

3
)
)

= · · ·

= x1 +
3m+1∑
k=1

k + 2
3m+1∑
k=1

cos(
2πxk

3
)

= 0 +
(3m+ 1)(3m+ 2)

2
+ 2

(
(1 + 1− 1

2
) + (1 + 1− 1

2
) + · · ·+ (1 + 1− 1

2
) + 1

)
=

(3m+ 1)(3m+ 2)

2
+ 2(

3

2
m+ 1)

=
(3m+ 1)(3m+ 2)

2
+ 3m+ 2

x3m+3 = x3m+2 + (3m+ 2) + 2 cos(
2πx3m+2

3
)

=
(
x3m+1 + (3m+ 1) + 2 cos(

2πx3m+1

3
)
)
+ (3m+ 2) + 2 cos(

2πx3m+2

3
)

= x3m+1 + (3m+ 1) + (3m+ 2) + 2
(
cos(

2πx3m+1

3
) + cos(

2πx3m+2

3
)
)

= · · ·

= x1 +
3m+2∑
k=1

k + 2
3m+2∑
k=1

cos(
2πxk

3
)

= 0 +
(3m+ 2)(3m+ 3)

2
+ 2

(
(1 + 1− 1

2
) + (1 + 1− 1

2
) + · · ·+ (1 + 1− 1

2
) + 1 + 1

)
=

(3m+ 2)(3m+ 3)

2
+ 2(

3

2
m+ 2)

=
(3m+ 2)(3m+ 3)

2
+ 3m+ 4



x3m+4 = x3m+3 + (3m+ 3) + 2 cos(
2πx3m+3

3
)

=
(
x3m+2 + (3m+ 2) + 2 cos(

2πx3m+2

3
)
)
+ (3m+ 3) + 2 cos(

2πx3m+3

3
)

= x3m+2 + (3m+ 2) + (3m+ 3) + 2
(
cos(

2πx3m+2

3
) + cos(

2πx3m+3

3
)
)

= · · ·

= x1 +
3m+3∑
k=1

k + 2
3m+3∑
k=1

cos(
2πxk

3
)

= 0 +
(3m+ 3)(3m+ 4)

2
+ 2

(
(1 + 1− 1

2
) + (1 + 1− 1

2
) + · · ·+ (1 + 1− 1

2
) + 1 + 1− 1

2

)
=

(3m+ 3)(3m+ 4)

2
+ 2

3

2
(m+ 1)

=
(3m+ 2)(3m+ 3)

2
+ 3(m+ 1)

Since y3m+2 = 3m+ 2, y3m+3 = 3m+ 4 and y3m+4 = 3(m+ 1),

x3m+2 − y3m+2 =
((3m+ 1)(3m+ 2)

2
+ 3m+ 2

)
− (3m+ 2) =

(3m+ 1)(3m+ 2)

2

x3m+3 − y3m+3 =
((3m+ 2)(3m+ 3)

2
+ 3m+ 4

)
− (3m+ 4) =

(3m+ 2)(3m+ 3)

2

x3m+4 − y3m+4 =
((3m+ 3)(3m+ 4)

2
+ 3(m+ 1)

)
− 3(m+ 1) =

(3m+ 3)(3m+ 4)

2

And x1 − y1 = 0− 0 =
(1− 1) · 1

2

Hence for n = 1, 2, 3, · · · ,

xn − yn =
n(n− 1)

2


