Kyushu University

Let n be a positive integer. and let I_n be minimum value of the definite integral

$$\int_0^1 (\sin(2n\pi t) - xt - y)^2 dt$$

Find the limit $\lim_{n \to \infty} I_n$.

[1] -

Given that two non-zero polynomials f(x) and g(x) which satisfy the equalities

$$f(x^2) = (x^2 + 2)g(x) + 7$$

$$g(x^3) = x^4 f(x) - 3x^2 f(x) - 6x^2 - 2$$

for any real number x.

[2] -

(1) Show that the degree of f(x) and the degree of g(x) are both less than or equal to 2.

(2) Find f(x) and g(x).

[3] -

Rolling a die three times, and let a, b and c are the numbers of die for the first, the second and the third rolling respectively.

Given that a quadratic equation

$$ax^2 + bx + c = 0$$

whose roots are z_1 and z_2 .

And let $P_1(z_1)$ and $P_2(z_2)$ are points on the Argand diagram represented by z_1 and z_2 respectively.

- (1) Find the probability that P_1 and P_2 are the same point.
- (2) Find the probability that P_1 and P_2 are both on the unit circle.
- (3) Let l_1 be the line passing through two points P_1 and O and let l_2 be the line passing through two points P 2 and O. Find the probability that the acute angle between two lines l_1 and l_2 is 60° .

[4]

Given that three points O(0,0), A(2,0) and $B(1,\sqrt{3})$ in the xy-plane. Let P_1 be a point on the segment AB, different from A and B.

We define points P_2 , P_3 , \cdots on the segment AB as: When a point P_n is fixed, let Q_n be a point on the segment OB such that $P_nQ_n \perp OB$, and let R_n be a point on the segment OA such that $Q_nR_n \perp OA$ then P_{n+1} is defined as a point on the segment AB such that $R_n P_{n+1} \perp AB$.

Find the coordinates of the limit point P_n as $n \to \infty$.

[5] -

Let a and b be complex numbers and let c be a complex number but not a pure complex number. Let C be a loci of point w which is defined as

$$w = \frac{az+b}{cz+1}$$

where z moves on the imaginary axis, and satisfy the following three conditions.

(a) When z = i, w = -i and when z = -i, w = -i.

(b) C is on the unit circle.

(c) The point -1 is not on C.

Find a, b and c. And find the equation of C and sketch it on the Argand diagram.