Nagoya University

[1]
Given that

$$
I_{n}=\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{\cos ^{n} \theta}
$$

where n is a positive integer.
(1) Find I_{1}.

You may use the result that $\frac{1}{\cos \theta}=\frac{1}{2}\left(\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1-\sin \theta}\right)$.
(2) Assume that $n \geq 3$. Express I_{n} with I_{n-2} and n.
(3) On the $x y$-plane, let D be a disc whose centre is the origin O and that the radius is 1 . Let C be a cone whose vertex is a point $(0,0,1)$ and that the base is D. Let S be a smaller part when C is cut by a plane $x=\frac{1}{2}$. Find the volume of S, considering the section of S by the planes parallel to the z-axis.

[2]

Given that an equilateral right triangle $A B C$, where $\angle B A C=\frac{\pi}{2}$ and given that a plane P. The point A is on the plane P and points B and C are not on the plane P. The plane P divides the space for two parts and the points B and C are in the same part. Ler B^{\prime} and C^{\prime} be two points on the plane P such that $B B^{\prime} \perp P$ and $C C^{\prime} \perp P$.
(1) Show that $\overrightarrow{A B^{\prime}} \cdot \overrightarrow{A C^{\prime}}+\overrightarrow{B^{\prime} B} \cdot \overrightarrow{C^{\prime} C}=\overrightarrow{0}$
(2) Show that $\angle B^{\prime} A C^{\prime}>\frac{\pi}{2}$.
(3) The length of the sides of the triangle $A B^{\prime} C^{\prime}$ on the plane P are $4, \sqrt{21}$ and 7 . Find the length of $A B$.

[3]

Let n be a positive integer and \sqrt{n} not be an integer.
When we represent \sqrt{n} to a decimal system, the first decimal place is 0 and the second decimal place is not 0 .
(1) Find the smallest n.
(2) When we order such integer n from the smallest to the largest, find the 10th smallest integern.

[4]

The number of permutation of n positive integers $1,2, \cdots, n$ is $n!$. Let $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be one of this permutation. When $a_{i}=j$ and $a_{j}=k$, we shall write down as $a_{i}=j \rightarrow a_{j}=k$. We continue this like $a_{i}=j \rightarrow a_{j}=k \rightarrow a_{k}=l \rightarrow \cdots$. For example, given that a permutation $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)=(2,5,6,1,4,3,7)$.
(i) $a_{1}=2 \rightarrow a_{2}=5 \rightarrow a_{5}=4 \rightarrow a_{4}=1 \rightarrow a_{1}=2$
(ii) $a_{3}=6 \rightarrow a_{6}=3 \rightarrow a_{3}=6$
(iii) $a_{7}=7 \rightarrow a_{7}=7$

Then when we start a_{i} of any index i, we will come back to the same a_{i}. We call this sequence the cycle and the number of different integers a_{i} in this cycle is called the length of the cycle.
For the former example, the length of the cycle (i) is 4 , the length of the cycle (ii) is 2 and the length of the cycle (iii) is 1 .
(1) Let $n=3$. Find the probability that a random chosen permutation $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ has at least one cycle whose length is 1 .
(2) Let $n=4$. Find all permutations which has at least one cycle whose length is 4 .
(3) Show that, for $k \leq n$,

$$
\sum_{j=k}^{n} \frac{1}{j}>\log (n+1)-\log k
$$

(4) Assume that n is an odd number. Show that $p>\log 2$, where p is a probability that a chosen permutation has a cycle whose length is larger than or equal to $\frac{n+1}{2}$.

