The First Order Linear Ordinary Differential Equations

$$
y^{\prime}+P(x) y=Q(x)
$$

## I. When $Q(x)=0$

Our equation is as

$$
\begin{aligned}
& y^{\prime}+P(x) y=0 \\
& \frac{d y}{d x}=-P(x) y
\end{aligned}
$$

Then

$$
\frac{d y}{y}=-P(x) d x
$$

which is a separable differential equation.
Integrate both sides of the equation;

$$
\int \frac{d y}{y}=-\int P(x) d x
$$

Then

$$
\ln |y|=-\int P(x) d x
$$

Let $F(x)=\int P(x) d x$, then

$$
\begin{align*}
& \ln |y|=-F(x)+C_{1} \\
& |y|=e^{-F(x)+C_{1}} \\
& y= \pm e^{C_{1}} e^{-F(x)} \\
& y=C e^{-F(x)} \quad \ldots \tag{*}
\end{align*}
$$

II. When $Q(x) \neq 0$

Suppose that $C=H(x)$ in $(*)$, then

$$
y=H(x) e^{-F(x)}
$$

When we can find the function $H(x)$, we can determine our function $y$.

$$
H(x)=e^{F(x)} y
$$

Differentiate this:

$$
H^{\prime}(x)=e^{F(x)} y^{\prime}+e^{F(x)} F^{\prime}(x) y
$$

Since $F^{\prime}(x)=P(x)$,

$$
H^{\prime}(x)=e^{F(x)} y^{\prime}+e^{F(x)} P(x) y=e^{F(x)}\left(y^{\prime}+P(x) y\right)
$$

From our differential equation $y^{\prime}+P(x) y=Q(x)$,

$$
H^{\prime}(x)=e^{F(x)} Q(x)
$$

Hence

$$
H(x)=\int e^{F(x)} Q(x) d x
$$

And therefore

$$
y=e^{-F(x)} \int e^{F(x)} Q(x) d x
$$

## III. Summary

For obtaining $H^{\prime}(x)$, we multiply the both sides of the differential equation by $e^{F(x)}$, which is called the integrating factor.

And integrating both sides, we can find the function $H(x)$, hence our solution $y$ of the differential equation:

$$
y^{\prime}+P(x) y=Q(x)
$$

Let $F(x)=\int P(x) d x$, then the integrating factor is $e^{F(x)}$.
Multiply both sides of the differential equation by this integrating factor,

$$
\begin{aligned}
& e^{F(x)} y^{\prime}+e^{F(x)} P(x) y=e^{F(x)} Q(x) \\
& e^{F(x)} y^{\prime}+\left(e^{F(x)}\right)^{\prime} y=e^{F(x)} Q(x)
\end{aligned}
$$

Then

$$
\frac{d}{d x}\left(e^{F(x)} y\right)=e^{F(x)} Q(x)
$$

Integrating both sides of this equation,

$$
e^{F(x)} y=\int e^{F(x)} Q(x) d x
$$

Hence

$$
y=e^{-F(x)} \int e^{F(x)} Q(x) d x
$$

## Example

Find the general solution of

$$
y^{\prime}+2 y=5 \sin x
$$

$$
F(x)=\int 2 d x=2 x
$$

Then the integrating factor is $e^{2 x}$ Multiply both sides of the differential equation by this integrating factor,

$$
\begin{aligned}
& e^{2 x} y^{\prime}+2 y e^{2 x}=5 e^{2 x} \sin x \\
& \frac{d}{d x}\left(e^{2 x} y\right)=5 e^{2 x} \sin x
\end{aligned}
$$

Integrating both sides of this equation,

$$
e^{2 x} y=\int 5 e^{2 x} \sin x d x
$$

Let $H(x)=\int 5 e^{2 x} \sin x d x$, then integrating by parts (twice),

$$
\begin{aligned}
H(x) & =\int e^{2 x}(5 \sin x) d x \\
& =\frac{1}{2} e^{2 x}(5 \sin x)-\int \frac{1}{2} e^{2 x}(5 \cos x) d x \\
& =\frac{5}{2} e^{2 x} \sin x-\frac{5}{2}\left(\frac{1}{2} e^{2 x} \cos x-\int \frac{1}{2} e^{2 x}(-\sin x) d x\right) \\
& =\frac{5}{4} e^{2 x}(2 \sin x-\cos x)-\frac{1}{4} \int e^{2 x}(5 \sin x) d x \\
& =\frac{5}{4} e^{2 x}(2 \sin x-\cos x)-\frac{1}{4} H(x)
\end{aligned}
$$

Then

$$
\frac{5}{4} H(x)=\frac{5}{4} e^{2 x}(2 \sin x-\cos x)+C_{1}
$$

Therefore

$$
H(x)=e^{2 x}(2 \sin x-\cos x)+C
$$

Hence

$$
\begin{aligned}
& e^{2 x} y=e^{2 x}(2 \sin x-\cos x)+C \\
& y=-\cos x+2 \sin x+C e^{-2 x}
\end{aligned}
$$

## Exercise

[1] Solve the following ODE of order 1.
(i) $y^{\prime}+(\tan x) y=x \cos x$
(ii) $y^{\prime}+\frac{2 x}{x^{2}+1} y=4 x$
(iii) $y^{\prime}+3 x y=4 x$
(iv) $y^{\prime}=x+y$
(v) $x y^{\prime}+y=x \sin x \quad(x>0)$
[2] The differential equation

$$
3 x y^{2} \frac{d y}{d x}+2 y^{3}=\frac{\cos x}{x}
$$

is to be solved for $x>0$. Use the substitution $u=y^{3}$ to find the general solution for $y$ in terms of $x$.
[3] (i) Find the general solution of the differential equation

$$
\frac{d y}{d x}+\frac{y}{x}=\sin 2 x
$$

expressing $y$ in terms of $x$ in your answer.
In a particular case, it is given that $y=\frac{2}{\pi}$ when $x=\frac{1}{4} \pi$.
(ii) Find the solution of the differential equation in this case.
(iii) Write down a function to which $y$ approximates when $x$ is large and positive.
[4] (i) Show that the substitution $z=y^{-2}$ transforms the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+2 x y=x e^{-x^{2}} y^{3} \tag{}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
\frac{d z}{d x}-4 x z=-2 x e^{-x^{2}} \tag{}
\end{equation*}
$$

(ii) Solve differential equation $\left({ }^{* *}\right)$ to find $z$ as a function of $x$.
(iii) Hence find the general solution of differential equation $\left(^{*}\right)$, giving your answer in the form $y^{2}=f(x)$.
[5] (i) Show that the substitution $v=y^{-3}$ transforms the differential equation

$$
\begin{equation*}
x \frac{d y}{d x}+y=A x^{4} y^{4} \tag{*}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
\frac{d v}{d x}-\frac{3 v}{x}=-6 x^{3} \tag{}
\end{equation*}
$$

(ii) By solving differential equation $\left({ }^{* *}\right)$, find the general solution of differential equation $\left(^{*}\right)$ in the form $y^{3}=f(x)$.
[6] Given that $P(x)=Q(x) R^{\prime}(x)-Q^{\prime}(x) R(x)$, write down an expression for

$$
\int \frac{P(x)}{(Q(x))^{2}} d x
$$

(i) By choosing the function $R(x)$ to be of the form $a+b x+c x^{2}$, nd

$$
\int \frac{5 x^{2}-4 x-3}{\left(1+2 x+3 x^{2}\right)^{2}} d x
$$

Show that the choice of $R(x)$ is not unique and, by comparing the two functions $R(x)$ corresponding to two different values of $a$, explain how the different choices are related.
(ii) Find the general solution of

$$
(1+\cos x+2 \sin x) \frac{d y}{d x}+(\sin x-2 \cos x) y=5-3 \cos x+4 \sin x
$$

