The 2nd order Linear Ordinary Differential Equations with constant coefficients

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R(x)
$$

I. When $R(x)=0$: homogeneous

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0 \tag{1}
\end{equation*}
$$

The solution of this equation (1) is called the complementary function and written as

$$
y_{C F}=y_{1}+y_{2}
$$

where y_{1} and y_{2} are independent functions.
For finding y_{1} and y_{2}, suppose that $y=A e^{m x}$, then

$$
\frac{d y}{d x}=m A e^{m x}, \quad \frac{d^{2} y}{d x^{2}}=m^{2} A e^{m x}
$$

Substitute to (1)

$$
\begin{aligned}
& m^{2} A e^{m x}+P m A e^{m x}+Q A e^{m x}=0 \\
& A e^{m x}\left(m^{2}+P m+Q\right)=0
\end{aligned}
$$

Hence

$$
m^{2}+P m+Q=0 \quad \cdots(2)
$$

which is called the auxiliary equation of (1).

1) When the auxiliary equation (2) has two different roots $m=$ $m_{1}, m=m_{2}$
The independent functions are

$$
y_{1}=A e^{m_{1} x} \quad \text { and } \quad y_{2}=B e^{m_{2} x}
$$

Then the complementary function is

$$
y_{C F}=y_{1}+y_{2}=A e^{m_{1} x}+B e^{m_{2} x}
$$

2) When the auxiliary equation (2) has one root (double roots) $m=$ m_{1}
The independent functions are

$$
y_{1}=A e^{m_{1} x} \quad \text { and } \quad y_{2}=B x e^{m_{1} x}
$$

Then the complementary function is

$$
y_{C F}=y_{1}+y_{2}=A e^{m_{1} x}+B x e^{m_{1} x}
$$

When the auxiliary equation (2) has two imaginary roots $m=a+i b$ and $m=a-i b$, we may write down as

$$
\begin{aligned}
y_{C F} & =y_{1}+y_{2} \\
& =C_{1} e^{(a+i b) x}+C_{2} e^{(a-i b) x} \\
& =C_{1} e^{a x} e^{i b x}+C_{2} e^{a x} e^{-i b x} \\
& =e^{a x}\left(C_{1} e^{i b x}+C_{2} e^{-i b x}\right) \\
& =e^{a x}\left(C_{1}(\cos b x+i \sin b x)+C_{2}(\cos b x-i \sin b x)\right) \\
& =e^{a x}\left(\left(C_{1}+C_{2}\right) \cos b x+i\left(C_{1}-C_{2}\right) \sin b x\right) \\
& =e^{a x}(A \cos b x+B \sin b x) \\
\boldsymbol{y}_{\boldsymbol{C}}= & \boldsymbol{y}_{\mathbf{1}}+\boldsymbol{y}_{\mathbf{2}}=\boldsymbol{e}^{\boldsymbol{a x}}(\boldsymbol{A} \cos \boldsymbol{b} \boldsymbol{x}+\boldsymbol{B} \sin \boldsymbol{b} \boldsymbol{x})
\end{aligned}
$$

II. When $R(x) \neq 0$: inhomogeneous

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R(x)
$$

The general solution of this equation is written as

$$
y=y_{C F}+y_{P I}
$$

where $y_{C F}$ is the complementary function of the homogeneous equation and $y_{P I}$ is the particular integral.
For finding the particular integral $y_{P I}$, we shall try

$R(x)$	$y_{P I}$
$R(x)=k$	$y_{P I}=C$
$R(x)=a x+b$	$y_{P I}=C x+D$
$R(x)=a x^{2}+b x+c$	$y_{P I}=C x^{2}+D x+E$
$R(x)=k \sin a x$ or $R(x)=k \cos a x$	$y_{P I}=C \cos a x+D \sin a x$
$R(x)=k e^{a x}$	$y_{P I}=C e^{a x}$

Example

Find the particular integral of

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 \sin 2 x
$$

Suppose that $y=C \cos 2 x+D \sin 2 x$, then

$$
\begin{aligned}
& y^{\prime}=-2 C \sin 2 x+2 D \cos 2 x \\
& y^{\prime \prime}=-4 C \cos 2 x-4 D \sin 2 x
\end{aligned}
$$

Then

$$
\begin{aligned}
& (-4 C \cos 2 x-4 D \sin 2 x)+3(-2 C \sin 2 x+2 D \cos 2 x)+2(C \cos 2 x+D \sin 2 x)=3 \sin 2 x \\
& (-2 C+6 D) \cos 2 x+(-6 C-2 D) \sin 2 x=3 \sin 2 x
\end{aligned}
$$

Comparing the coefficients.

$$
\begin{aligned}
& -2 C+6 D=0, \quad-6 C-2 D=3 \\
& C=-\frac{9}{20}, \quad D=-\frac{3}{20}
\end{aligned}
$$

Hence the particular integral is

$$
y_{P I}=-\frac{9}{20} \cos 2 x-\frac{3}{20} \sin 2 x
$$

Example

Fine the general solution of

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{-x}
$$

Solving the auxiliary equation

$$
m^{2}+3 m+2=0
$$

we have

$$
\begin{aligned}
& (m+1)(m+2)=0 \\
& m=-1 \quad \text { or } \quad m=-2
\end{aligned}
$$

Then the complimentary function is

$$
y_{C F}=A e^{-x}+B e^{-2 x}
$$

Since $A e^{-x}$ is included in the C.F. we cannot use $y=C e^{-x}$ as the particular integral.
Then we suppose that $y_{P I}=C x e^{-x}$.

$$
y=C x e^{-x}, \quad y^{\prime}=C e^{-x}-C x e^{-x}, \quad y^{\prime \prime}=-C e^{-x}-\left(C e^{-x}-C x e^{-x}\right)=-2 C e^{-x}+C x e^{-x}
$$

Then

$$
\begin{aligned}
& \left(-2 C e^{-x}+C x e^{-x}\right)+3\left(C e^{-x}-C x e^{-x}\right)+2 C x e^{-x}=e^{-x} \\
& C e^{-x}=e^{-x}
\end{aligned}
$$

Comparing the coefficient, we have

$$
C=1
$$

Hence the particular integral is

$$
y_{P I}=x e^{-x}
$$

Hence the general solution is

$$
y=y_{C F}+y_{P I}=A e^{-x}+B e^{-2 x}+x e^{-x}
$$

Exercise

[1] Find the general solution of the following differential equations.
(i) $y^{\prime \prime}-2 y^{\prime}-3 y=6$
(ii) $y^{\prime \prime}+5 y^{\prime}+6 y=2 x$
(iii) $y^{\prime \prime}+2 y^{\prime}+y=\cos 3 x$
(iv) $y^{\prime \prime}+4 y^{\prime}+5 y=2 e^{-2 x}$
[2] (i) Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y=27 e^{-x}
$$

(ii) Find the particular solution that satisfies $y=0$ and $\frac{d y}{d x}=0$ when $x=0$.
[3] (i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=2 \sin x \tag{*}
\end{equation*}
$$

(ii) Given that $y=0$ and $\frac{d y}{d x}=1$ when $x=0$.

Find the particular solution of differential equation $\left(^{*}\right)$.
[4] (i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y=27 z^{-x} \tag{*}
\end{equation*}
$$

(ii) Given that $y=0$ and $\frac{d y}{d x}=0$ when $x=0$.

Find the particular solution of differential equation $\left(^{*}\right)$.
[5] Show that, if $y=e^{x}$, then

$$
\begin{equation*}
(x-1) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0 \tag{*}
\end{equation*}
$$

In order to find other solution of this differential equation, now let $y=u e^{x}$, where u is a function of x. By substituting this into (*), show that

$$
\begin{equation*}
(x-1) \frac{d^{2} u}{d x^{2}}+(x-2) \frac{d u}{d x}=0 \tag{}
\end{equation*}
$$

By setting $\frac{d u}{d x}=v$ in $\left({ }^{* *}\right)$ and solving the resulting first order differential equation for v, find u in termsof x. Hence show that $y=A x+B e^{x}$ satisfies $\left(^{*}\right)$, where A and B are any constants.
[6] (i) Find functions $a(x)$ and $b(x)$ such that $u=x$ and $u=e^{-x}$ both satisfy the equation,

$$
\frac{d^{2} u}{d x^{2}}+a(x) \frac{d u}{d x}+b(x) u=0
$$

For these functions $a(x)$ and $b(x)$, write down the general solution of the equation.

Show that the substitution $y=\frac{1}{3 u} \frac{d u}{d x}$ transforms the equation

$$
\begin{equation*}
\frac{d y}{d x}+3 y^{2}+\frac{x}{1+x} y=\frac{1}{3(1+x)} \tag{*}
\end{equation*}
$$

into

$$
\frac{d^{2} u}{d x^{2}}+\frac{x}{1+x} \frac{d u}{d x}-\frac{1}{1+x}=0
$$

and hence show that the solution of equation $\left(^{*}\right)$ that satisfies $y=0$ at $x=0$ is given by $y=\frac{1-e^{-x}}{3\left(x+e^{-x}\right)}$.
(ii) Find the solution of the equation

$$
\frac{d y}{d x}+y^{2}+\frac{x}{1-x} y=\frac{1}{1-x}
$$

that satisfies $y=2$ at $x=0$.

