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[1]� �
Let r be a positive real number. In the complex plane, the locus of z is the

circle whose centre is the point
3

2
and the radius is r. Find the locus w such

that

z + w = zw� �
The equation of z is

|z − 3

2
| = r · · · (*)

From the equation z + w = zw,

z =
w

w − 1

Substitute this in (*). ∣∣∣ w

w − 1
− 3

2

∣∣∣ = r

∣∣∣2w − 3(w − 1)

2(w − 1)

∣∣∣ = r

∣∣∣−w + 3)

2(w − 1)

∣∣∣ = r

| − w + 3| = 2r|w − 1| or |w − 3| = 2r|w − 1|

When r =
1

2
,

|w − 3| = |w − 1|

The locus of w is the perpendicular bisector of the segment joining the point 1 and
the point 3.

When r 6= 1

2
,

|w − 3|2 = 4r2|w − 1|2

(w − 3)(w − 3) = 4r2(w − 1)(w − 1)

ww − 3w − 3w + 9 = 4r2(ww − w − w + 1)



(4r2 − 1)ww − (4r2 − 3)w − (4r2 − 3)w + 4r2 − 9 = 0

ww − 4r2 − 3

4r2 − 1
w − 4r2 − 3

4r2 − 1
w +

4r2 − 9

4r2 − 1
= 0

w
(
w − 4r2 − 3

4r2 − 1

)
− 4r2 − 3

4r2 − 1
w +

4r2 − 9

4r2 − 1
= 0

w
(
w − 4r2 − 3

4r2 − 1

)
− 4r2 − 3

4r2 − 1

(
w − 4r2 − 3

4r2 − 1

)
−
(4r2 − 3

4r2 − 1

)2
+

4r2 − 9

4r2 − 1
= 0

(
w − 4r2 − 3

4r2 − 1

)(
w − 4r2 − 3

4r2 − 1

)
=

16r2

(4r2 − 1)2∣∣∣w − 4r2 − 3

4r2 − 1

∣∣∣2 = 16r2

(4r2 − 1)2∣∣∣w − 4r2 − 3

4r2 − 1

∣∣∣ = 4r

|4r2 − 1|

The locus of w is a circle whose centre is the point
4r2 − 3

4r2 − 1
and the radius is

4r

|4r2 − 1|
.

Conclusion:
The locus of w is

• When r =
1

2
, the perpendicular bisector of the segment joining 1 and 3.

• When r 6= 1

2
, the circle whose centre is the point

4r2 − 3

4r2 − 1
and the radius is

4r

|4r2 − 1|
.



[2]� �
Let α =

2π

7
.

(1) Show that cos 4α = cos 3α.

(2) Given that f(x) = 8x3 + 4x2 − 4x− 1. Show that f(cosα) = 0.

(3) Show that cosα is an irrational number.� �
(1)

cos 4α = cos
8π

7
= cos(π +

π

7
) = − cos

π

7

cos 3α = cos
6π

7
= cos(π − π

7
) = − cos

π

7

Hence cos 4α = cos 3α.

(2) From cos 4α = cos 3α,

2 cos2 2α− 1 = 4 cos3 α− 3 cosα

2(2 cos2 α− 1)2 − 1 = 4 cos3 α− 3 cosα

8 cos4 α− 4 cos3 α− 8 cos2 α+ 3 cosα+ 1 = 0

(cosα− 1)(8 cos3 α+ 4 cos2 α− 4 cosα− 1) = 0

Since cosα = cos
2π

7
6= 1, cosα− 1 6= 0. Then

8 cos3 α+ 4 cos2 α− 4 cosα− 1 = 0

i.e.

f(cosα) = 0

(3) f(x) = 8x3 + 4x2 − 4x− 1,

f ′(x) = 24x2 + 8x− 4 = 4(6x2 + 2x− 1)

When f ′(x) = 0,

6x2 + 2x− 1 = 0, then x =
−1±

√
7

6

f(0) = −1 and f(1) = 7, we have the variation table of f in the interval
0 ≤ x ≤ 1 as

x 0 −1+
√
7

6 1

f ′(x) − 0 +

f(x) −1 ↘ (minimum) ↗ 7



Since

f(

√
3

2
) = 8

(√3

2

)3
+4

(√3

2

)2−−4
(√3

2

)
−1 = 3

√
3+3−2

√
2−1 =

√
3+2 > 0

Then we can write our variation table of f as

x 0 −1+
√
7

6

√
3
2 1

f ′(x) − 0 + + +

f(x) −1 ↘ (minimum) ↗
√
4 + 2 ↗ 7

From this table we can say that in the interval 0 ≤ x ≤ 1, the equation f(x) = 0

has only one real solution, which is larger than
−1 +

√
7

6
and smaller than

√
3

2
.

As
π

3
=

7π

21
>

6π

21
=

2π

7
= α

cos
π

3
< cosα

Then √
3

2
< cosα < 1

It means that x = cosα is not a real solution of f(x) = 0.
Since x = cosα is a solution of f(x) = 0,
cosα must be an irrational number.



[3]� �
Let t be a positive real number and given that two points P (0, t) and Q(

1

t
, 0)

in the plane. When 1 ≤ t ≤ 2, draw the region where the segment PQ may
pass.� �

The equation of the segment PQ is

y = −t2x+ t (x ≥ 0, y ≥ 0)

We consider this equation as a quadratic equation for t,

xt2 − t+ y = 0 · · · (*)

The coordinates (x, y) in the region, where the segment PQ may pass, are satisfy
the condition such that the quadratic equation (*) has at least one real root in the
interval 1 ≤ t ≤ 2.

i) When x = 0, the equation is −t+ y = 0.
Then 1 ≤ y ≤ 2.

ii) When x 6= 0,

let f(t) = xt2 − t+ y.

f(t) = x(t− 1

2x
)2 − 1

4x
+ y

ii) - (a) Condition for the eqution (*) has two real roots and one of the roots is in
the interval 1 ≤ t ≤ 2 and other root is outside of this interval (or both 1 and 2
are the roots of (*))

t
1

2−
+

t1
2

−
+

f(1)f(2) ≤ 0

(x− 1 + y)(4x− 2 + y) ≤ 0

(y ≥ −x+ 1 and y ≤ −4x+ 2) or (y ≤ −x+ 1 and y ≥ −4x+ 2)



x

y

O 1

1

1
2

2

1
3

2
3

ii)-(b) Condition for the eqution (*) has two real roots and both roots are in
the interval 1 ≤ t ≤ 2,

t
1 2

+ +

−

( 1
2x ,−

1
4x + y)

1
2x

f(1) ≥ 0 and f(2) ≥ 0 and 1 ≤ 1

2x
≤ 2 and − 1

4x
+ y 5 0

y ≥ −x+ 1 and y ≥ −4x+ 2 and
1

4
≤ x ≤ 1

2
and y 5

1

4x

x

y

O 1

1

1
2

2

y =
1

4x
1
3

2
3

1
4

1
2



Hence the required region is the shaded part of the diagram below.

x

y

O 1

1

1
2

2

y =
1

4x

1
3

2
3

1
4

1
2



−x+ 1 ≤ y ≤ −4x+ 2 (0 ≤ x ≤ 1

4
)

−x+ 1 ≤ y ≤ 1

4x
(
1

4
≤ x ≤ 1

3
)

−4x+ 2 ≤ y ≤ 1

4x
(
1

3
≤ x ≤ 1

2
)

0 ≤ y ≤ −x+ 1 (
1

2
≤ x ≤ 1)
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Given that f(x) = log(x+ 1) + 1.

(1) Show that the equation f(x) = x has one and only one solution for x > 0.

(2) Let α be the unique solution of (1). Show that

0 <
α− f(x)

α− x
< f ′(x)

if a real number x satisfies 0 < x < α.

(3) The sequence {xn} is defined by

x1 = 1, xn+1 = f(xn) (n = 1, 2, 3, · · · )

Show that, for any natural number n,

α− xn+1 <
1

2
(α− xn)

(4) Show that lim
n→∞

xn = α� �
(1) Let g(x) = f(x)− x = log(x+ 1) + 1− x.

g′(x) =
1

x+ 1
− 1 = − x

x+ 1

Then, for x > 0, g′(x) < 0.
g(x) is strictly decreasing for x > 0.

Since g(0) = log 1 + 1− 0 = 1 > 0 and

lim
x→∞

g(x) = lim
x→∞

(log(x+1)+1−x) = lim
x→∞

x
( log(x+ 1)

x
+
1

x
−1

)
= lim

x→∞
(−x) =

−∞ < 0

Then g(x) = 0 has only one solution for x > 0.
Hence f(x) = x has only one solution for x > 0.

(2) f(x) = log x+ 1) + 1

f ′(x) =
1

x+ 1
> 0 for x > 0

Then f(x) is strictly increasing for x > 0.
Therefore α− f(x) = f(α)− f(x) > 0 for 0 < x < α.
And α− x > 0, hence

0 <
α− f(x)

α− x



According to the mean value theorem, there exists c such that x < c < α and

f(α)− f(x)

α− x
= f ′(c)

On the other hand,

f ′′(x) = − 1

(x+ 1)2
< 0

Then f ′(x) is strictly decreasing.

Therefore f ′(c) < f ′(x) for 0 < x < c < α.
Then

f(α)− f(x)

α− x
= f ′(c) < f ′(x)

And f(α) = α, hence

α− f(x)

α− x
< f ′(x)

Then we proved that

0 <
α− f(x)

α− x
< f ′(x)

(3) First we shall prove, by induction, that 1 ≤ xn < α for any positive integer n.

We have proved that g(x) = f(x) − x is strictly decreasing for x > 0 in
the part of (1).

g(1) = f(1)− 1 = log(2) + 1− 1 = log 2 > 0 and g(α) = 0

Then 1 < α.

Therefore 1 ≤ x1 = 1 < α.

Suppose that 1 ≤ xn < α,

xn+1 = f(xn) = log(xn + 1) + 1

Since 1 ≤ xn < α,

log(1 + 1) + 1 ≤ log(xn + 1) + 1 < log(α+ 1) + 1

1 ≤ log 2 + 1 ≤ ()xn + 1) + 1 < log(α+ 1) + 1 = α

Hence 1 ≤ xn+1 < α.
Therefore we have proved that, for all positive integers n, 1 ≤ xn < α.

Then from the part of (2),

0 <
α− f(xn)

α− xn
< f ′(xn)



0 < α− f(xn) < f ′(xn)(α− xn)

0 < α− xn+1 < f ′(xn)(α− xn)

Since f ′(x) =
1

x+ 1
≤ 1

2
for x ≥ 1,

0 < α− xn+1 < f ′(xn)(α− xn) ≤
1

2
(α− xn)

I.e. α− xn+1 <
1

2
(α− xn).

(4) From the result of the part (3),

0 < α− xn <
1

2
(α− xn−1) <

(1
2

)2
(α− xn−2) < · · · <

(1
2

)n−1
(α− x1)

Then

0 ≤ lim
n→∞

(α− xn) ≤ lim
n→∞

(1
2

)n−1
(α− x1) = 0

lim
n→∞

(α− xn) = 0

Hence

lim
n→∞

xn = α
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Let C be the curve, which is defined by the parametric equations:

x = et cos t+ eπ, y = et sin t (0 ≤ t ≤ π)

Find the area of the region surrounded by the curve C and the x-axis.� �
The curve C0, defined by

x = et cos t, y = et sin t

is obtained by translating the curve C through −eπ units parallel to the x-axis.

r =
√
x2 + y2 =

√
e2t cos2 t+ e2t sin2 t =

√
e2t(cos2 t+ sin2 t) =

√
e2t = et

Then the polar equation of the curve C0 can be written as

r = eθ (0 ≤ θ ≤ π)

x

y

O 1−eπ 1 + eπ

CC0

The required region and the region surrounded by C0 and the x-axis are con-
gruent.

Hence the area of the region surrounded by the curve C and the x-axis is

(Area of the region) =
1

2

∫ π

0
r2dθ

=
1

2

∫ π

0
e2θdθ

=
1

2

[1
2
e2θ

]π
0

=
1

4
(e2π − 1)


