Entrance Exams of Osaka University 2022

Let r be a positive real number. In the complex plane, the locus of z is the circle whose centre is the point $\frac{3}{2}$ and the radius is r. Find the locus w such that

$$
z+w=z w
$$

The equation of z is

$$
\left|z-\frac{3}{2}\right|=r \cdots(*)
$$

From the equation $z+w=z w$,

$$
z=\frac{w}{w-1}
$$

Substitute this in $\left(^{*}\right)$.

$$
\begin{aligned}
&\left|\frac{w}{w-1}-\frac{3}{2}\right|=r \\
&\left|\frac{2 w-3(w-1)}{2(w-1)}\right|=r \\
&\left|\frac{-w+3)}{2(w-1)}\right|=r \\
&|-w+3|=2 r|w-1| \quad \text { or } \quad|w-3|=2 r|w-1|
\end{aligned}
$$

When $r=\frac{1}{2}$,

$$
|w-3|=|w-1|
$$

The locus of w is the perpendicular bisector of the segment joining the point 1 and the point 3 .

When $r \neq \frac{1}{2}$,

$$
\begin{aligned}
|w-3|^{2} & =4 r^{2}|w-1|^{2} \\
(w-3)(\bar{w}-3) & =4 r^{2}(w-1)(\bar{w}-1) \\
w \bar{w}-3 w-3 \bar{w}+9 & =4 r^{2}(w \bar{w}-w-\bar{w}+1)
\end{aligned}
$$

$$
\begin{gathered}
\left(4 r^{2}-1\right) w \bar{w}-\left(4 r^{2}-3\right) w-\left(4 r^{2}-3\right) \bar{w}+4 r^{2}-9=0 \\
w \bar{w}-\frac{4 r^{2}-3}{4 r^{2}-1} w-\frac{4 r^{2}-3}{4 r^{2}-1} \bar{w}+\frac{4 r^{2}-9}{4 r^{2}-1}=0 \\
w\left(\bar{w}-\frac{4 r^{2}-3}{4 r^{2}-1}\right)-\frac{4 r^{2}-3}{4 r^{2}-1} \bar{w}+\frac{4 r^{2}-9}{4 r^{2}-1}=0 \\
w\left(\bar{w}-\frac{4 r^{2}-3}{4 r^{2}-1}\right)-\frac{4 r^{2}-3}{4 r^{2}-1}\left(\bar{w}-\frac{4 r^{2}-3}{4 r^{2}-1}\right)-\left(\frac{4 r^{2}-3}{4 r^{2}-1}\right)^{2}+\frac{4 r^{2}-9}{4 r^{2}-1}=0 \\
\left(w-\frac{4 r^{2}-3}{4 r^{2}-1}\right)\left(\bar{w}-\frac{4 r^{2}-3}{4 r^{2}-1}\right)=\frac{16 r^{2}}{\left(4 r^{2}-1\right)^{2}} \\
\left|w-\frac{4 r^{2}-3}{4 r^{2}-1}\right|^{2}=\frac{16 r^{2}}{\left(4 r^{2}-1\right)^{2}} \\
\left|w-\frac{4 r^{2}-3}{4 r^{2}-1}\right|=\frac{4 r}{\left|4 r^{2}-1\right|}
\end{gathered}
$$

The locus of w is a circle whose centre is the point $\frac{4 r^{2}-3}{4 r^{2}-1}$ and the radius is $\frac{4 r}{\left|4 r^{2}-1\right|}$.
Conclusion:
The locus of w is

- When $r=\frac{1}{2}$, the perpendicular bisector of the segment joining 1 and 3 .
- When $r \neq \frac{1}{2}$, the circle whose centre is the point $\frac{4 r^{2}-3}{4 r^{2}-1}$ and the radius is $\frac{4 r}{\left|4 r^{2}-1\right|}$.

Let $\alpha=\frac{2 \pi}{7}$.
(1) Show that $\cos 4 \alpha=\cos 3 \alpha$.
(2) Given that $f(x)=8 x^{3}+4 x^{2}-4 x-1$. Show that $f(\cos \alpha)=0$.
(3) Show that $\cos \alpha$ is an irrational number.
(1)

$$
\begin{aligned}
& \cos 4 \alpha=\cos \frac{8 \pi}{7}=\cos \left(\pi+\frac{\pi}{7}\right)=-\cos \frac{\pi}{7} \\
& \cos 3 \alpha=\cos \frac{6 \pi}{7}=\cos \left(\pi-\frac{\pi}{7}\right)=-\cos \frac{\pi}{7}
\end{aligned}
$$

Hence $\cos 4 \alpha=\cos 3 \alpha$.
(2) From $\cos 4 \alpha=\cos 3 \alpha$,

$$
\begin{gathered}
2 \cos ^{2} 2 \alpha-1=4 \cos ^{3} \alpha-3 \cos \alpha \\
2\left(2 \cos ^{2} \alpha-1\right)^{2}-1=4 \cos ^{3} \alpha-3 \cos \alpha \\
8 \cos ^{4} \alpha-4 \cos ^{3} \alpha-8 \cos ^{2} \alpha+3 \cos \alpha+1=0 \\
(\cos \alpha-1)\left(8 \cos ^{3} \alpha+4 \cos ^{2} \alpha-4 \cos \alpha-1\right)=0
\end{gathered}
$$

Since $\cos \alpha=\cos \frac{2 \pi}{7} \neq 1, \cos \alpha-1 \neq 0$. Then

$$
8 \cos ^{3} \alpha+4 \cos ^{2} \alpha-4 \cos \alpha-1=0
$$

i.e.

$$
f(\cos \alpha)=0
$$

(3) $f(x)=8 x^{3}+4 x^{2}-4 x-1$,

$$
f^{\prime}(x)=24 x^{2}+8 x-4=4\left(6 x^{2}+2 x-1\right)
$$

When $f^{\prime}(x)=0$,

$$
6 x^{2}+2 x-1=0, \quad \text { then } \quad x=\frac{-1 \pm \sqrt{7}}{6}
$$

$f(0)=-1$ and $f(1)=7$, we have the variation table of f in the interval $0 \leq x \leq 1$ as

x	0		$\frac{-1+\sqrt{7}}{6}$		1
$f^{\prime}(x)$		-	0	+	
$f(x)$	-1	\searrow	(minimum)	\nearrow	7

Since
$f\left(\frac{\sqrt{3}}{2}\right)=8\left(\frac{\sqrt{3}}{2}\right)^{3}+4\left(\frac{\sqrt{3}}{2}\right)^{2}--4\left(\frac{\sqrt{3}}{2}\right)-1=3 \sqrt{3}+3-2 \sqrt{2}-1=\sqrt{3}+2>0$
Then we can write our variation table of f as

x	0		$\frac{-1+\sqrt{7}}{6}$		$\frac{\sqrt{3}}{2}$	1	
$f^{\prime}(x)$		-	0	+	+	+	
$f(x)$	-1	\searrow	(minimum)	\nearrow	$\sqrt{4}+2$	\nearrow	7

From this table we can say that in the interval $0 \leq x \leq 1$, the equation $f(x)=0$ has only one real solution, which is larger than $\frac{-1+\sqrt{7}}{6}$ and smaller than $\frac{\sqrt{3}}{2}$.

As

$$
\begin{gathered}
\frac{\pi}{3}=\frac{7 \pi}{21}>\frac{6 \pi}{21}=\frac{2 \pi}{7}=\alpha \\
\cos \frac{\pi}{3}<\cos \alpha
\end{gathered}
$$

Then

$$
\frac{\sqrt{3}}{2}<\cos \alpha<1
$$

It means that $x=\cos \alpha$ is not a real solution of $f(x)=0$.
Since $x=\cos \alpha$ is a solution of $f(x)=0$, $\cos \alpha$ must be an irrational number.
[3]
Let t be a positive real number and given that two points $P(0, t)$ and $Q\left(\frac{1}{t}, 0\right)$ in the plane. When $1 \leq t \leq 2$, draw the region where the segment $P Q$ may pass.

The equation of the segment $P Q$ is

$$
y=-t^{2} x+t \quad(x \geq 0, y \geq 0)
$$

We consider this equation as a quadratic equation for t,

$$
x t^{2}-t+y=0 \quad \cdots(*)
$$

The coordinates (x, y) in the region, where the segment $P Q$ may pass, are satisfy the condition such that the quadratic equation $\left(^{*}\right)$ has at least one real root in the interval $1 \leq t \leq 2$.
i) When $x=0$, the equation is $-t+y=0$.

Then $1 \leq y \leq 2$.
ii) When $x \neq 0$,
let $f(t)=x t^{2}-t+y$.

$$
f(t)=x\left(t-\frac{1}{2 x}\right)^{2}-\frac{1}{4 x}+y
$$

ii) - (a) Condition for the eqution $\left(^{*}\right)$ has two real roots and one of the roots is in the interval $1 \leq t \leq 2$ and other root is outside of this interval (or both 1 and 2 are the roots of $\left({ }^{*}\right)$)

$$
\begin{gathered}
f(1) f(2) \leq 0 \\
(x-1+y)(4 x-2+y) \leq 0
\end{gathered}
$$

$$
(y \geq-x+1 \quad \text { and } \quad y \leq-4 x+2) \quad \text { or } \quad(y \leq-x+1 \quad \text { and } \quad y \geq-4 x+2)
$$

ii)-(b) Condition for the eqution $\left({ }^{*}\right)$ has two real roots and both roots are in the interval $1 \leq t \leq 2$,

$$
\begin{aligned}
& f(1) \geq 0 \quad \text { and } \quad f(2) \geq 0 \quad \text { and } \quad 1 \leq \frac{1}{2 x} \leq 2 \quad \text { and } \quad-\frac{1}{4 x}+y \leqq 0 \\
& y \geq-x+1 \quad \text { and } \quad y \geq-4 x+2 \quad \text { and } \quad \frac{1}{4} \leq x \leq \frac{1}{2} \quad \text { and } \quad y \leqq \frac{1}{4 x}
\end{aligned}
$$

Hence the required region is the shaded part of the diagram below.

$$
\begin{cases}-x+1 \leq y \leq-4 x+2 & \left(0 \leq x \leq \frac{1}{4}\right) \\ -x+1 \leq y \leq \frac{1}{4 x} & \left(\frac{1}{4} \leq x \leq \frac{1}{3}\right) \\ -4 x+2 \leq y \leq \frac{1}{4 x} & \left(\frac{1}{3} \leq x \leq \frac{1}{2}\right) \\ 0 \leq y \leq-x+1 & \left(\frac{1}{2} \leq x \leq 1\right)\end{cases}
$$

$$
[4]
$$

Given that $f(x)=\log (x+1)+1$.
(1) Show that the equation $f(x)=x$ has one and only one solution for $x>0$.
(2) Let α be the unique solution of (1). Show that

$$
0<\frac{\alpha-f(x)}{\alpha-x}<f^{\prime}(x)
$$

if a real number x satisfies $0<x<\alpha$.
(3) The sequence $\left\{x_{n}\right\}$ is defined by

$$
x_{1}=1, \quad x_{n+1}=f\left(x_{n}\right) \quad(n=1,2,3, \cdots)
$$

Show that, for any natural number n,

$$
\alpha-x_{n+1}<\frac{1}{2}\left(\alpha-x_{n}\right)
$$

(4) Show that $\lim _{n \rightarrow \infty} x_{n}=\alpha$
(1) Let $g(x)=f(x)-x=\log (x+1)+1-x$.

$$
g^{\prime}(x)=\frac{1}{x+1}-1=-\frac{x}{x+1}
$$

Then, for $x>0, g^{\prime}(x)<0$.
$g(x)$ is strictly decreasing for $x>0$.
Since $g(0)=\log 1+1-0=1>0$ and
$\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty}(\log (x+1)+1-x)=\lim _{x \rightarrow \infty} x\left(\frac{\log (x+1)}{x}+\frac{1}{x}-1\right)=\lim _{x \rightarrow \infty}(-x)=$
$-\infty<0$
Then $g(x)=0$ has only one solution for $x>0$.
Hence $f(x)=x$ has only one solution for $x>0$.
(2) $f(x)=\log x+1)+1$

$$
f^{\prime}(x)=\frac{1}{x+1}>0 \quad \text { for } x>0
$$

Then $f(x)$ is strictly increasing for $x>0$.
Therefore $\alpha-f(x)=f(\alpha)-f(x)>0$ for $0<x<\alpha$.
And $\alpha-x>0$, hence

$$
0<\frac{\alpha-f(x)}{\alpha-x}
$$

According to the mean value theorem, there exists c such that $x<c<\alpha$ and

$$
\frac{f(\alpha)-f(x)}{\alpha-x}=f^{\prime}(c)
$$

On the other hand,

$$
f^{\prime \prime}(x)=-\frac{1}{(x+1)^{2}}<0
$$

Then $f^{\prime}(x)$ is strictly decreasing.
Therefore $f^{\prime}(c)<f^{\prime}(x)$ for $0<x<c<\alpha$.
Then

$$
\frac{f(\alpha)-f(x)}{\alpha-x}=f^{\prime}(c)<f^{\prime}(x)
$$

And $f(\alpha)=\alpha$, hence

$$
\frac{\alpha-f(x)}{\alpha-x}<f^{\prime}(x)
$$

Then we proved that

$$
0<\frac{\alpha-f(x)}{\alpha-x}<f^{\prime}(x)
$$

(3) First we shall prove, by induction, that $1 \leq x_{n}<\alpha$ for any positive integer n.

We have proved that $g(x)=f(x)-x$ is strictly decreasing for $x>0$ in the part of (1).

$$
g(1)=f(1)-1=\log (2)+1-1=\log 2>0 \quad \text { and } \quad g(\alpha)=0
$$

Then $1<\alpha$.
Therefore $1 \leq x_{1}=1<\alpha$.
Suppose that $1 \leq x_{n}<\alpha$,

$$
x_{n+1}=f\left(x_{n}\right)=\log \left(x_{n}+1\right)+1
$$

Since $1 \leq x_{n}<\alpha$,

$$
\begin{aligned}
& \log (1+1)+1 \leq \log \left(x_{n}+1\right)+1<\log (\alpha+1)+1 \\
& \left.1 \leq \log 2+1 \leq() x_{n}+1\right)+1<\log (\alpha+1)+1=\alpha
\end{aligned}
$$

Hence $1 \leq x_{n+1}<\alpha$.
Therefore we have proved that, for all positive integers $n, 1 \leq x_{n}<\alpha$.
Then from the part of (2),

$$
0<\frac{\alpha-f\left(x_{n}\right)}{\alpha-x_{n}}<f^{\prime}\left(x_{n}\right)
$$

$$
\begin{aligned}
& 0<\alpha-f\left(x_{n}\right)<f^{\prime}\left(x_{n}\right)\left(\alpha-x_{n}\right) \\
& 0<\alpha-x_{n+1}<f^{\prime}\left(x_{n}\right)\left(\alpha-x_{n}\right)
\end{aligned}
$$

Since $f^{\prime}(x)=\frac{1}{x+1} \leq \frac{1}{2} \quad$ for $\quad x \geq 1$,

$$
0<\alpha-x_{n+1}<f^{\prime}\left(x_{n}\right)\left(\alpha-x_{n}\right) \leq \frac{1}{2}\left(\alpha-x_{n}\right)
$$

I.e. $\alpha-x_{n+1}<\frac{1}{2}\left(\alpha-x_{n}\right)$.
(4) From the result of the part (3),

$$
0<\alpha-x_{n}<\frac{1}{2}\left(\alpha-x_{n-1}\right)<\left(\frac{1}{2}\right)^{2}\left(\alpha-x_{n-2}\right)<\cdots<\left(\frac{1}{2}\right)^{n-1}\left(\alpha-x_{1}\right)
$$

Then

$$
\begin{gathered}
0 \leq \lim _{n \rightarrow \infty}\left(\alpha-x_{n}\right) \leq \lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n-1}\left(\alpha-x_{1}\right)=0 \\
\lim _{n \rightarrow \infty}\left(\alpha-x_{n}\right)=0
\end{gathered}
$$

Hence

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha
$$

[5]

Let C be the curve, which is defined by the parametric equations:

$$
x=e^{t} \cos t+e^{\pi}, \quad y=e^{t} \sin t \quad(0 \leq t \leq \pi)
$$

Find the area of the region surrounded by the curve C and the x-axis.

The curve C_{0}, defined by

$$
x=e^{t} \cos t, \quad y=e^{t} \sin t
$$

is obtained by translating the curve C through $-e^{\pi}$ units parallel to the x-axis.

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{e^{2 t} \cos ^{2} t+e^{2 t} \sin ^{2} t}=\sqrt{e^{2 t}\left(\cos ^{2} t+\sin ^{2} t\right)}=\sqrt{e^{2 t}}=e^{t}
$$

Then the polar equation of the curve C_{0} can be written as

$$
r=e^{\theta} \quad(0 \leq \theta \leq \pi)
$$

The required region and the region surrounded by C_{0} and the x-axis are congruent.

Hence the area of the region surrounded by the curve C and the x-axis is

$$
\begin{aligned}
(\text { Area of the region }) & =\frac{1}{2} \int_{0}^{\pi} r^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi} e^{2 \theta} d \theta \\
& =\frac{1}{2}\left[\frac{1}{2} e^{2 \theta}\right]_{0}^{\pi} \\
& =\frac{1}{4}\left(e^{2 \pi}-1\right)
\end{aligned}
$$

