Tohoku University

[1]
Assume that two tangents of the curve $y=\sin x$ are perpendicular to each other. Find the y coordinate of the points of intersection of these tangents.

[2]

Let $a(\neq 1)$ be a positive real number and let n be a positive integer.
Given that an inequality:

$$
\log _{a}(x-n)>\frac{1}{2} \log _{q}(2 n-x)
$$

(1) When $n=6$, find all integers x satisfy the given inequality.
(2) Find the necessary and sufficient condition for n such that there exist integers x satisfying the given inequality.

[3]

Let a be a real number and let $\left\{x_{n}\right\}$ be a sequence defined by

$$
x_{1}=a, \quad x_{n+1}=x_{n}+x^{2}(n=1,2,3, \cdots)
$$

(1) Show that the sequence is divergent, when $a>0$.
(2) Find the limit of the sequence $\left\{x_{n}\right\}$, when $-1<a<0$.

[4]

Let $A(x)$ be a polynomial whose coefficients are real numbers. Let $[A(x)]$ be the remainder when $A(x)$ is divided by $x^{2}+1$.
(1) Find $\left[2 x^{2}+x+3\right]$, $\left[x^{5}-1\right]$ and $\left[\left[2 x^{2}+x+3\right]\left[x^{5}-1\right]\right]$.
(2) Show that

$$
[A(x) B(x)]=[[A(x)][B(x)]]
$$

for any polynomials $A(x)$ and $B(x)$.
(3) Show that

$$
\left[(x \sin \theta+\cos \theta)^{2}\right]=x \sin 2 \theta+\cos 2 \theta
$$

for any real number θ.
(4) Find all couples (a, b) of real numbers such that

$$
\left[(a x+b)^{4}\right]=-1
$$

[5]

(1) Show that

$$
\int_{-1}^{1} \frac{\sin ^{2}(\pi x)}{1+e^{x}} d x=\int^{1} \sin ^{2}(\pi x) d x=\frac{1}{2}
$$

(2) Find a function $f(x)$ such that

$$
\left(1+e^{x}\right) f(x)=\sin ^{2}(\pi x)+\int_{-1}^{1}\left(e^{x}-e^{t}+1\right) f(t) d t
$$

[6]

In a bag there are 10 balls, 5 red and 5 white.
We put out randomly one ball from this bag and put one white ball in this bag.
When we repeat m times of this action, we let $p(m, k)$ be the probability that we took out k red balls from the bag.
Assume that $n \geq 2$.
(1) Express $p(n+1,2)$ with respect to $p(n, 2)$ and $p(n, 1)$.
(2) Find $p(n, 1)$.
(3) Find $p(n, 2)$.

