Tokyo University

[1]

Find the value of

$$
\int_{0}^{1}\left(x^{2}+\frac{x}{\sqrt{1+x^{2}}}\right)\left(1+\frac{x}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\right) d x
$$

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}+\frac{x}{\sqrt{1+x^{2}}}\right) & \left(1+\frac{x}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\right) d x \\
& =\int_{0}^{1}\left(x^{2}+\frac{x}{\sqrt{1+x^{2}}}+\frac{x^{3}}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}\right) d x
\end{aligned}
$$

i) $\int_{0}^{1} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{3}$
ii) $\int_{0}^{1}\left(\frac{x}{\sqrt{1+x^{2}}}+\frac{x^{3}}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\right) d x$

Substitute $u=1+x^{2}$,

$$
\frac{d u}{d x}=2 x, \quad d x=\frac{d u}{2 x}
$$

And

$$
\begin{array}{l|lll}
x & 0 & \rightarrow & 1 \\
\hline u & 1 & \rightarrow & 2
\end{array}
$$

Then

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{x}{\sqrt{1+x^{2}}}+\frac{x^{3}}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\right) d x & =\int_{1}^{2}\left(\frac{x}{\sqrt{u}}+\frac{x^{3}}{u \sqrt{u}}\right) \frac{d u}{2 x} \\
& =\frac{1}{2} \int_{1}^{2}\left(\frac{1}{\sqrt{u}}+\frac{x^{2}}{u \sqrt{u}}\right) d u \\
& =\frac{1}{2} \int_{1}^{2}\left(\frac{1}{\sqrt{u}}+\frac{u-1}{u \sqrt{u}}\right) d u \\
& =\frac{1}{2} \int_{1}^{2}\left(2 u^{-\frac{1}{2}}-u^{-\frac{3}{2}}\right) d u \\
& =\frac{1}{2}\left[4 \sqrt{u}+\frac{2}{\sqrt{u}}\right]_{1}^{2} \\
& =2 \sqrt{2}+\frac{1}{\sqrt{2}}-2-1 \\
& =\frac{5 \sqrt{2}-6}{2}
\end{aligned}
$$

iii) $\int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x$

Substitute $x=\tan \theta$,

$$
\frac{d x}{d \theta}=\frac{1}{\cos ^{2} \theta}, \quad d x=\frac{d \theta}{\cos ^{2} \theta}
$$

And

$$
\begin{array}{l|lll}
x & 0 & \rightarrow & 1 \\
\hline \theta & 0 & \rightarrow & \frac{\pi}{4}
\end{array}
$$

Then

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x & =\int_{0}^{\frac{\pi}{4}} \frac{\tan ^{2} \theta}{\left(1+\tan ^{2} \theta\right)^{2}} \frac{d \theta}{\cos ^{2} \theta} \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\left(\frac{1}{\cos ^{2} \theta}\right)^{2}} \frac{d \theta}{\cos ^{2} \theta} \\
& =\int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \frac{1-\cos 2 \theta}{2} d \theta \\
& =\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}+\frac{x}{\sqrt{1+x^{2}}}\right) & \left(1+\frac{x}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\right) d x \\
& =\frac{1}{3}+\frac{5 \sqrt{2}-6}{2}+\left(\frac{\pi}{8}-\frac{1}{4}\right) \\
& =\frac{\pi}{8}+\frac{5 \sqrt{2}}{2}-\frac{35}{12}
\end{aligned}
$$

[2]

Given that a square $A B C D$, whose side's length is 1 . Let three points P, Q and R are on the sides $A B, A D$ and $C D$ respectively and the area of the triangle $A P Q$ and the area of the triangle $P Q R$ are both $\frac{1}{3}$.
Find the maximum and minimum values of $\frac{D R}{A Q}$.

Let $A P=u, A Q=v$ and $D R=w$, then $0 \leq u \leq 1,0 \leq v \leq 1$ and $0 \leq w \leq 1$.
Since the area of the triangle $A P Q$ and the area of the triangle $P Q R$ are both $\frac{1}{3}$,

$$
\begin{gather*}
\triangle A P Q=\frac{1}{2} u v=\frac{1}{3} \quad \cdots \quad \text { (1) } \\
\triangle P Q R=\operatorname{Trapeze}(A P R D)-\triangle A P Q-\triangle D Q R=\frac{1}{2}(u+w) \cdot 1-\frac{1}{2} u v-\frac{1}{2}(1-v) w=\frac{1}{3} \quad \cdots \tag{2}
\end{gather*}
$$

From (1),

$$
v=\frac{2}{3 u}
$$

Since $0 \leq v \leq 1,0 \leq \frac{2}{3 u} \leq 1$.
Then $\frac{2}{3} \leq u \leq 1$.
From (2),

$$
\begin{gathered}
u-u v+v w=\frac{2}{3} \\
u-u \cdot \frac{2}{3 u}+\frac{2}{3 u} \cdot w=\frac{2}{3} \\
w=\frac{1}{2}\left(4 u-3 u^{2}\right)
\end{gathered}
$$

Then

$$
\frac{D R}{A Q}=\frac{w}{v}=\frac{1}{2}\left(4 u-3 u^{2}\right) \cdot \frac{3 u}{2}=\frac{3}{4}\left(4 u^{2}-3 u^{3}\right)
$$

Let $f(u)=\frac{3}{4}\left(4 u^{2}-3 u^{3}\right)$,

$$
f^{\prime}(u)=\frac{3}{4}\left(8 u-9 u^{2}\right)=\frac{3}{4} u(8-9 u)
$$

When $f^{\prime}(u)=0, u=0, \frac{8}{9}$.
The variation table of f is

u	$\frac{2}{3}$		$\frac{8}{9}$		1
$f^{\prime}(u)$		+	0	-	
$f(u)$	$\frac{2}{3}$	\nearrow	$\frac{64}{81}$	\searrow	$\frac{3}{4}$

Hence the maximum value of $\frac{D R}{A Q}$ is $\frac{64}{81}$
and the minimum value of $\frac{D R}{A Q}$ is $\frac{2}{3}$

[3]

Given that 5 points $A(2,0,0), B(0,2,0), C(-2,0,0), D(0,-2,0)$ and $E(0,0,-2)$. Let α be a plane passing through the midpoint M of $A B$ and the midpoint N of $A D$ and parallel to the line $A E$. And given that a point $P(p, 0,2)$, where $2<p<4$.
(1) Sketch the section of the octahedron $P A B C D E$ by the plane whose equation is $y=0$, and sketch the intersection of the two planes α and $y=0$ on the same coordinate system.
(2) Find the range of value p such that the section of the octahedron $P A B C D E$ and the plane α forms an octagon.
(3) Assume that the value of p is in the range found in the question (2).

When a point (x, y, z) is moving in the intersection of the octahedron $P A B C D E$ and the plane α such that $y \geq 0$ and $z \geq 0$, find the area of the region which is formed by the moving points (y, z).
(1)
$2<p<3$

(2) When $2=p \leq 3$, the plane α cuts the octahedron $P A B C D E$ at point on the sides $C E, B E, D E, A B, A D$ and $P A$; six points. Then it is not formed an octagon.
When $3<p<4$, the plane α cuts the octahedron $P A B C D E$ at point on the sides $C E, B E, D E, A B, A D, P B, P D$ and $P C$; eight points. The it forms an octagon.
Hence the required region of the value p is

$$
3<p<4
$$

(3) We shall see the reflection on the $x z$-plane of the intersection of the octahedron $P A B C D E$ and the plane α, where $y \geq 0$ and $z \geq 0$, using a diagram in (2).
The equation of the line $P C$ is $z=\frac{2}{p+2}(x+2)$ and the equation of the line α is $z=x-1$.
Then the coordinates of the intersection of the two lines are $(x, z)=\left(1+\frac{6}{p}, \frac{6}{p}\right)$.
Hence the coordinates of the intersection of the side $P C$ and the plane α are $\left(1+\frac{6}{p}, 0, \frac{6}{p}\right)$.
The equation of the line $P O$ is $z=\frac{2}{p} x$. Solving the simultaneous equations $z=\frac{2}{p} x$ and $z=x-1$, we can find the coordinates of the intersection of $P O$ and the line α as $(x, z)=\left(\frac{p}{p-2}, \frac{2}{p-2}\right)$.
A relation between the y and z coordinates of the side $P B$ is represented as $z=-y+2$.
Then, when $z=\frac{2}{p-2}, y=\frac{2 p-6}{p-2}$.
Hence the coordinates of the intersection of the side $P B$ and the plane α are $\left(\frac{p}{p-2}, \frac{2 p-6}{p-2}, \frac{2}{p-2}\right)$.
The coordinates of the intersection of the side $A B$ and the plane α are $M(1,1,0)$.
Therefore our required region which is formed by the points (y, z) is as the diagram below:

Hence the area of the required region is

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot 2 \cdot 2-\frac{1}{2}\left(2-\frac{6}{p}\right) \cdot \frac{2 p-6}{p-2}-\frac{1}{2}(2-1) \cdot \frac{2}{p-2} \\
& =2-\frac{2(p-3)^{2}}{p(p-2)}-\frac{1}{p-2} \\
& =\frac{2 p(p-2)-2(p-3)^{2}-p}{p(p-2)} \\
& =\frac{2 p^{2}-4 p-2\left(p^{2}-6 p+9\right)-p}{p(p-2)} \\
& =\frac{7 p-18}{p(p-2)}
\end{aligned}
$$

[4]

Let n be an integer which is larger than or equal to 1 .
(1) Find the largest common divisor d_{n} of $n^{2}+1$ and $5 n^{2}+9$.
(2) Show that $\left(n^{2}+1\right)\left(5 n^{2}+9\right)$ is not a square of any integer.
(1) Use the Euclidian Algorithm.

Since $5 n^{2}+9=5\left(n^{2}+1\right)+4$, the largest common divisor of $n^{2}+1$ and $5 n^{2}+9$ is the largest common divisor of $n^{2}+1$ and 4 .
(i) When n is even, we can write down as $n=2 k$,

$$
n^{2}+1=(2 k)^{2}+1=4 k^{2}+1
$$

Then $n^{2}+1$ and 4 are prime each other.
Hence the largest common divisor of $n^{2}+1$ and 4 is 1 .
(ii) When n is odd, we can write down as $n=2 k+1$,

$$
n^{2}+1=(2 k+1)^{2}+1=4 k^{2}+4 k+2=2\left(2 k^{2}+2 k+1\right)
$$

Then the largest common divisor of $n^{2}+1$ and 4 is 2 .
Hence the largest common divisor of $n^{2}+1$ and $5 n^{2}+9$ is

$$
d_{n}= \begin{cases}1 & (\text { when } n \text { is even }) \\ 2 & (\text { when } n \text { is odd) }\end{cases}
$$

(2) (i) When n is even,
the largest common divisor of $n^{2}+1$ and $5 n^{2}+9$ is 1 .
Then for $\left(n^{2}+1\right)\left(5 n^{2}+9\right)$ is a square of some integer, each $n^{2}+1$ and $5 n^{2}+9$ are a square of some integer.
As $n^{2}<n^{2}+1<(n+1)^{2}, n^{2}+1$ is not a square of any integer.
Hence $\left(n^{2}+1\right)\left(5 n^{2}+9\right)$ is not a square of any integer.
(ii) When n is odd,
the largest common divisor of $n^{2}+1$ and $5 n^{2}+9$ is 2 .
If $\left(n^{2}+1\right)\left(5 n^{2}+9\right)$ is a square of some integer, we can write down as

$$
n^{2}+1=2 p^{2} \quad \text { and } \quad 5 n^{2}+9=2 q^{2}
$$

and p and q are prime each other.

$$
\begin{gathered}
\left(5 n^{2}+9\right)-\left(n^{2}+1\right)=2 q^{2}-2 p^{2} \\
4 n^{2}+8=2\left(q^{2}-p^{2}\right) \\
4\left(n^{2}+2\right)=2(q+p)(q-p)
\end{gathered}
$$

Since n is odd, $n^{2}+2$ is also odd, then $4\left(n^{2}+2\right)$ is divisible by 4 but not divisible by 8 .
If $q+p$ is odd, $q-p$ is also odd, then $2(q+p)(q-p)$ is not divisible by 4 .
If $q+p$ is even, $q-p$ is also even, then $2(q+p)(q-p)$ is divisible by 8 .
Both case, $4\left(n^{2}+2\right)$ and $2(q+p)(q-p)$ are not equal.
Contradiction.
Hence $\left(n^{2}+1\right)\left(5 n^{2}+9\right)$ is not a square of any integer.

[5]

(1) Let n be an integer which is larger than or equal to 1 . Show that the equation

$$
x^{2 n-1}=\cos x
$$

has only one real root a_{n}.
(2) For a_{n} at the part of question (1), show that $\cos a_{n}>\cos 1$.
(3) For the sequence $a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots$ defined by (1), find

$$
a=\lim _{n \rightarrow \infty} a_{n}, \quad b=\lim _{n \rightarrow \infty} a_{n}^{n}, \quad c=\lim _{n \rightarrow \infty} \frac{a_{n}^{n}-b}{a_{n}-a}
$$

(1) i) When $x \leq-\frac{\pi}{2}$,

$$
x^{2 n-1} \leq-\left(\frac{\pi}{2}\right)^{2 n-1}<-1
$$

Since $-1 \leq \cos x$, we have

$$
x^{2 n-1}<\cos x
$$

ii) When $-\frac{\pi}{2}<x \leq 0$,

$$
x^{2 n-1} \leq 0, \quad \text { and } \quad 0<\cos x \leq 1
$$

Then

$$
x^{2 n-1}<\cos x
$$

iii) When $0<x<\frac{\pi}{2}$,
let $f(x)=x^{2 n-1}-\cos x$, then

$$
f^{\prime}(x)=(2 n-1) x^{2 n-2}+\sin x>0
$$

Therefore the function $f(x)$ is strictly increasing in the interval $0<x<\frac{\pi}{2}$.

$$
f(0)=-1<0, \quad \text { and } \quad f\left(\frac{\pi}{2}\right)=\left(\frac{\pi}{2}\right)^{2 n-1}>0
$$

Hence there exist one and only one value $x=a_{n}$ such that $f\left(a_{n}\right)=0$ and $0<a_{n}<\frac{\pi}{2}$.
iv) When $\frac{\pi}{2} \leq x$,

$$
x^{2 n-1} \geq\left(\frac{\pi}{2}\right)^{2 n-1}>1
$$

and $\cos x \leq 1$.
Then

$$
x^{2 n-1}>\cos x
$$

Hence the equation $x^{2 n-1}=\cos x$ has one and only one root a_{n} such that $0<a_{n}<\frac{\pi}{2}$.
(2) Since $f(1)=1-\cos 1>0$ and $f(0)=-1<0$,
then

$$
0<a_{n}<1
$$

Since $\cos x$ is strictly decreasing in the interval $0<x<1$,

$$
\cos a_{n}>\cos 1
$$

(3) From $a_{n}^{2 n-1}=\cos a_{n}$,

$$
a_{n}=\left(\cos a_{n}\right)^{\frac{1}{2 n-1}}
$$

Since $\cos a_{n}>\cos 1$,

$$
\begin{gathered}
(\cos 1)^{\frac{1}{2 n-1}}<\left(\cos a_{n}\right)^{\frac{1}{2 n-1}}=a_{n}<1 \\
\lim _{n \rightarrow \infty}(\cos 1)^{\frac{1}{2 n-1}} \leq \lim _{n \rightarrow \infty} a_{n} \leq 1 \\
1 \leq \lim _{n \rightarrow \infty} a_{n} \leq 1
\end{gathered}
$$

Hence

$$
a=\lim _{n \rightarrow \infty} a_{n}=1
$$

$$
\left(a_{n}^{n}\right)^{2}=a_{n}^{2 n}=a_{n} a_{n}^{2 n-1}=a_{n} \cos a_{n}
$$

Then

$$
a_{n}^{n}=\sqrt{a_{n} \cos a_{n}}
$$

Hence

$$
\begin{gathered}
b=\lim _{n \rightarrow \infty} a_{n}^{n}=\lim _{n \rightarrow \infty} \sqrt{a_{n} \cos a_{n}}=\sqrt{\cos 1} \\
\frac{a_{n}^{n}-b}{a_{n}-a}=\frac{\sqrt{a_{n} \cos a_{n}}-\sqrt{\cos 1}}{a_{n}-1}
\end{gathered}
$$

Let $g(x)=\sqrt{x \cos x}$,
then

$$
g^{\prime}(x)=\frac{\cos x-x \sin x}{2 \sqrt{x \cos x}}
$$

From the mean value theorem,
there exist a real number α such that $a_{n}<\alpha<1$ and

$$
\frac{g\left(a_{n}\right)-g(1)}{a_{n}-1}=g^{\prime}(\alpha)
$$

then

$$
\frac{a_{n}^{n}-b}{a_{n}-a}=g^{\prime}(\alpha)
$$

Since $a_{n}<\alpha<1$ and $\lim _{n \rightarrow \infty} a_{n}=1$,

$$
\lim _{n \rightarrow \infty} \alpha=1
$$

Hence

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty} \frac{a_{n}^{n}-b}{a_{n}-a} \\
& =\lim _{n \rightarrow \infty} g^{\prime}(\alpha) \\
& =g^{\prime}(1) \\
& =\frac{\cos 1-\sin 1}{2 \sqrt{\cos 1}}
\end{aligned}
$$

[6]

Given that complex numbers α, β, γ and δ and real numbers a and b which satisfy the three conditions:
(i) α, β, γ and δ are different number each other.
(ii) α, β, γ and δ are the roots of quartic equation $x^{4}-2 x^{3}-2 a x+b=0$.
(iii) The real part of a complex number $\alpha \beta+\gamma \delta$ is 0 and the imaginary part of $\alpha \beta+\gamma \delta$ is not 0 .

Answer the following qustions.
(1) Show that two of the complex numbers α, β, γ and δ are real, and another two are conjugate complex numbers each other.
(2) Express b with terms of a.
(3) Sketch the loci of the point $\alpha+\beta$ on the Argand diagram.
(1) Since the all of the coefficients of the quartic equation $x^{4}-2 x^{3}-2 a x+b=0$ are real, if $u+i v$ is a root of this equation, its conjugate $u-i v$ is also a root of this equation.
Then the roots of the equation $x^{4}-2 x^{3}-2 a x+b=0$ are all real number, or two real numbers and two complex numbers (conjugate each other), or four non-real numbers.
a) If all roots of the equation are real, the condition (ii) is not satisfied.
b) If all roots are non-real numbers, we can write down the four roots as

$$
s+i t, s-i t, u+i v, u-i v \quad \text { where } t \neq 0 \text { and } v \neq 0 \text {) }
$$

Assume that $\alpha=s+i t, \beta=s-i t, \gamma=u+i v$ and $\delta=u-i v$, then

$$
\alpha \beta+\gamma \delta=(s+i t)(s-i t)+(u+i v)(u-i v)=s^{2}+t^{2}+u^{2}+v^{2}
$$

which is not satisfied the condition (iii).
Assume that $\alpha=s+i t, \beta=u+i v, \gamma=s-i t$ and $\delta=u-i v$, then

$$
\alpha \beta+\gamma \delta=(s+i t)(u+i v)+(s-i t)(u-i v)=2 s u-2 t v
$$

which is not satisfied the condition (iii).

Hence two of the roots of the equation $x^{4}-2 x^{3}-2 a x+b=0$ are real numbers, and another tow roots are complex numbers which are conjugate each other.
(2) Let $p, q, u+i v$ and $u-i v$ be the roots of the quartic equation $x^{4}-2 x^{3}-2 a x+b=0$.

Assume that $\alpha=p, \beta=q, \gamma=u+i v$ and $\delta=u-i v$.
Then

$$
\alpha \beta+\gamma \delta=p+q+(u+i v)+(u-i v)=p+q+2 u
$$

which is not satisfied the condition (iii).

Assume that $\alpha=p, \beta=u+i v, \gamma=q$ and $\delta=u-i v$.
Then

$$
\alpha \beta+\gamma \delta=p(u+i v)+q(u-i v)=u(p+q)+i v(p-q)
$$

From the condition (iii),

$$
u(p+q)=0, \quad \text { and } \quad v(p-q) \neq 0
$$

Then $u=0$ or $q=-p$ and $v \neq 0$ and $p \neq q$.
Since α, β, γ and δ are the roots of the quartic equation

$$
x^{4}-2 x^{3}-2 a x+b=0
$$

We have the formula

$$
\left\{\begin{array}{l}
\alpha+\beta+\gamma+\delta=2 \\
\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=0 \\
\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=2 a \\
\alpha \beta \gamma \delta=b
\end{array}\right.
$$

(a) When $u=0$, we can write down the roots as

$$
\alpha=p, \beta=i v, \gamma=q, \delta=-i v
$$

Then

$$
\begin{aligned}
& \left\{\begin{array}{l}
p+i v+q-i v=2 \\
i p v+p q-i p v+i q v+v^{2}-i q v=0 \\
i p q v+p v^{2}-i p q v+q v^{2}=2 a \\
p q v^{2}=b
\end{array}\right. \\
& \qquad\left\{\begin{array}{l}
p+q=2 \\
p q+v^{2}=0 \\
v^{2}(p+q)=2 a \\
p q v^{2}=b
\end{array}\right.
\end{aligned}
$$

Therefore $p q=-v^{2}, a=v^{2}$ and $b=p q v^{2}$.
Hence

$$
b=-a^{2}
$$

(b) When $q=-p$, we can write down the roots as

$$
\alpha=p, \beta=u+i v, \gamma=-p, \delta=u-i v
$$

Then

$$
\begin{aligned}
& \left\{\begin{array}{l}
p+(u+i v)-p+(u-i v)=2 \\
p(u+i v)-p^{2}+p(u-i v)-p(u+i v)+(u+i v)(u-i v)-p(u-i v)=0 \\
-p^{2}(u+i v)+p(u+i v)(u-i v)-p^{2}(u-i v)-p(u+i v)(u-i v)=2 a \\
-p^{2}(u+i v)(u-i v)=b
\end{array}\right. \\
& \qquad\left\{\begin{array}{l}
2 u=2 \\
-p^{2}+u^{2}+v^{2}=0 \\
-2 p^{2} u=2 a \\
-p^{2}\left(u^{2}+v^{2}\right)=b
\end{array}\right.
\end{aligned}
$$

Therefore $u=1, p^{2}=u^{2}+v^{2}, a=-p^{2}$ and $b=-p^{2}\left(u^{2}+v^{2}\right)$.
Hence

$$
b=-a^{2}
$$

Hence

$$
b=-a^{2}
$$

(3) Form the answer of the question (2), we can say that $u=0$ or $q=-p$.
(a) When $u=0$,

$$
\alpha=p, \beta=i v, \gamma=q, \delta=-i v
$$

Then

$$
\alpha+\beta=p+i v
$$

Let $\alpha+\beta=x+i y$, then $x=p$ and $y=v$.
Since $p+q=2$ and $p q+v^{2}=0, p(2-p)+v^{2}=0$.

$$
\begin{aligned}
& x(2-x)+y^{2}=0 \\
& (x-1)^{2}-y^{2}=1
\end{aligned}
$$

and $y \neq 0($ since $v \neq 0)$.
(b) When $q=-p$,

$$
\alpha=p, \beta=u+i v, \gamma=-p, \delta=u-i v
$$

Then

$$
\alpha+\beta=p+(u+i v)=(p+u)+i v
$$

Let $\alpha+\beta=x+i y$, then $x=p+u$ and $y=v$.
Since $u=1, p^{2}=u^{2}+v^{2}$,

$$
\begin{aligned}
& (x-1)^{2}=1+y^{2} \\
& (x-1)^{2}-y^{2}=1
\end{aligned}
$$

and $y \neq 0$.
Hence the equation of the loci of $\alpha+\beta$ is

$$
(x-1)^{2}-y^{2}=1
$$

