Vector

Example 1

Given a regular hexagon $A B C D E F$ and let $\vec{a}=\overrightarrow{\mathrm{AB}}, \vec{b}=\overrightarrow{\mathrm{AF}}$. Present the following vectors with \vec{a} and \vec{b}.
(1) $\overrightarrow{\mathrm{AC}}$
(2) $\overrightarrow{\mathrm{AD}}$
(3) $\overrightarrow{\mathrm{CD}}$
(4) $\overrightarrow{\mathrm{CE}}$

[1] Given a parallelogram $A B C D$, and let intersection of two diagonals be O. Let E be the point dividing internally the segmentt $A B$ in the ratio $1: 2$, and let F be the midpoint of $B C$.
Present the following vectors by $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AD}}$.
(1) $\overrightarrow{\mathrm{AO}}$
(2) $\overrightarrow{\mathrm{DO}}$
(3) $\overrightarrow{\mathrm{AF}}$
(4) $\overrightarrow{\mathrm{EF}}$
[2] Present the following \vec{x} and \vec{y} by \vec{a} and \vec{b}.
(1) $\vec{x}+2(\vec{x}-\vec{b})=4(\vec{b}-2 \vec{a})-\vec{a}$
(2) $\frac{1}{2}(\vec{b}+\vec{x})+3\left(\vec{x}-\frac{1}{2} \vec{b}\right)=\overrightarrow{0}$
(3) $2 \vec{x}+3 \vec{y}=\vec{a}+\vec{b}, \quad 3 \vec{x}+2 \vec{y}=\vec{b}$
(1) Let $\vec{a}=(-1,2), \vec{b}=(1,-2), \vec{c}=(4,4)$. Find the real numbers l, k, which satisfies $\vec{c}=l \vec{a}+k \vec{b}$.
(2) Find the unit vector who has the same direction as $\vec{a}=(3,5)$.
[3] Let $\vec{a}=(-1,4), \vec{b}=(3,2), \vec{c}=(0,-5)$.
Find the following vecors.
(1) $-3 \vec{a}+\vec{b}$
(2) $\vec{a}-2 \vec{b}+3 \vec{c}$
(3) $6(\vec{c}-2 \vec{a})-5(-3 \vec{b}+\vec{a})$
[4] (1) Let $\vec{a}=(1,1), \vec{b}=(-1,-3), \vec{c}=(-3,-5)$. Find the real numbers l, k, which satisfies $\vec{c}=l \vec{a}+k \vec{b}$.
(2) Given a parallelogram $A B C D$, and let $A(1,2), B(3,5), C(-4,0)$. Find the coordinate of the point D.
[5] Let $\vec{a}=(3,1), \vec{b}=(1,2), \vec{c}=\vec{a}+t \vec{b}$, where t is a real number.
(1) If $\|\vec{c}\|=\sqrt{15}$, find the value of t.
(2) Find the minimal value of $\|\vec{c}\|$ and t at this time.
[6] Given A, B, C be three points, which are not on a line. Let $\overrightarrow{A B}=\vec{a}, \overrightarrow{A C}=\vec{b}$. Present the vector, by \vec{a}, \vec{b}, whose direction is the bisection of $\angle A B C$.

Example 3
(1) Let $\vec{a}=\left(x_{1}, y_{1}\right), \vec{b}=\left(x_{2}, y_{2}\right)$ and the angle between \vec{a} and \vec{b} be θ, then prove that

$$
\|\vec{a} \mid\| \vec{b} \| \cos \theta=x_{1} x_{2}+y_{1} y_{2}
$$

(2) Given two vectors $\vec{a}=(1,-1), \vec{b}=(2, x)$. Find the x, which satisfies the following condition.
(1) $\vec{a} \perp \vec{b}$
(2) The angle between \vec{a} (3) $\vec{a} \| \vec{b}$ and \vec{b} is 120°
[7] Let $\|\vec{a}\|=4,\|\vec{b}\|=5$ and the angle between \vec{a} and \vec{b} be as follows. Find the dot product of \vec{a} and \vec{b}.
(1) 45°
(2) 120°
(3) 90°
(4) 180°
[8] Find the dot product of \vec{a}, \vec{b}.
(1) $\vec{a}=(2,0), \vec{b}=(2,1)$
(2) $\vec{a}=(1,-1), \vec{b}=(3,2)$
(3) $\vec{a}=(k+2, k-1), \vec{b}=(2 k-4,-k+1)$
(4) $\vec{a}=(p+q, q), \vec{b}=(p-q, p)$
[9] Find the angle between \vec{a}, \vec{b}.
(1) $\vec{a}=(1, \sqrt{3}), \vec{b}=(2,0)$
(2) $\vec{a}=(3,7), \vec{b}=(2,-5)$
(3) $\vec{a}=(-\sqrt{3}-1, \sqrt{3}-1), \vec{b}=(1,1)$
(4) $\vec{a}=(\sqrt{2}, \sqrt{2}), \vec{b}=(\sqrt{3}-1, \sqrt{3}+1)$
[10] (1) Given $\|\vec{a}\|=1,\|\vec{b}\|=5,\|2 \vec{a}+\vec{b}\|=3$. Find $\vec{a} \cdot \vec{b}$.
(2) Let $\vec{a}=(3,7), \vec{b}=(2,-5)$. Find the minimal value of $\|\vec{a}+t \vec{b}\|$ and the value of t at this time.

Example 4

Given $\triangle A B C$, let D be the point dividing internally $A B$ in the ratio $3: 1, E$ be the point dividing internally $A C$ in the ratio 4:3. And let P be the intersection of $B E$ and $C D, Q$ be the intersection of $A P$ and $B C$.
(1) Present $\overrightarrow{B E}, \overrightarrow{C D}$ by $\overrightarrow{A B}, \overrightarrow{A C}$.
(2) Find the ratio $A P: P Q$.
[11] Given $\triangle O A B$ and let C be the point dividing internally $O A$ in the ratio $5: 2, D$ be the point dividing internally $O B$ in the ratio $3: 4$ and M be the middle point of $C D$.
(1) Present $\overrightarrow{O M}$ by $\overrightarrow{O A}, \overrightarrow{O B}$.
(2) Let N be the intersection of $O M$ and $A B$, find the ratio $O N: O M$ and $A N: N B$.
[12] Given a regular pentagon $A B C D E$ whose side's length is 1 . Let $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$. Present $\overrightarrow{C D}$ by \vec{a}, \vec{b}.
[13] Given $\triangle A B C$ and let $\overrightarrow{A B}=\vec{c}, \overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\vec{a}$, and let $A B=c, B C=a, C A=b$.
(1) Let G be the centre of gravity of $\triangle A B C$. Present $\overrightarrow{A G}$ by \vec{b} and \vec{c}.
(2) Present $\|\overrightarrow{A G}\|^{2}$ by a, b, c.
(3) Find the angle $\angle A G B$, when $a=\sqrt{12}, b=\sqrt{21}, c=\sqrt{3}$.

Example 5
[1] Find the equation of following lines.
(1) Line passing through the point $(-3,4)$ and parallel with the vector $\vec{v}=(1,-2)$.
(2) Line passing through two points $(1,-3),(-2,4)$.
(3) Line passing tthrough he point $(5,-4)$ and perpendicular with the vector $\vec{v}=(1,-2)$.
[2] Find the equation of the circle, whose centre is $(2,0)$ and passes through the point $(-1,3)$.
[14] Find the equation of following lines.
(1) Line passing through the point $(2,4)$ and perpendicular with $\vec{n}=(1,-2)$.
(2) The perpendicular bisector of the segment whose vertexes are $(1,-3),(-2,4)$.
[15] Find the equation of the circle whose centre is $(-2,3)$ and tangent to the line $x-y-1=0$.
[16] Let O be the circumcentre of $\triangle A B C$ and let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$.
(1) Let A^{\prime} be the intersection of $B C$ and the line which passes through the point A and perpendicular to $B C$. Find the equation of the line $A A^{\prime}$.
(2) Let H be the orthocentre of $\triangle A B C$. Present $\overrightarrow{O H}$ by $\vec{a}, \vec{b}, \vec{c}$.

Example 6

Given a tetrahedron $O A B C$ and let D be the internally dividing point of $A B$ in the ratio $1: 2, E$ be the internally dividing point of $C D$ in the ratio $3: 5$ and F be the internally dividing point of $O E$ in the ratio $1: 3$. And let G be the intersection of the line $A F$ and the plane $O B C$. Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$.
(1) Present $\overrightarrow{O E}$ by $\vec{a}, \vec{b}, \vec{c}$.
(2) Find the ratio $A G: F G$.
[17] Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the positional vectors of each vertex of a tetrahedron $A B C D$. Find the positional vector of the point which divides internally the segment between A and the centre of gravity of the triangle $\triangle B C D$ in the ratio $3: 1$.
[18] Given a parallelogram $A B C D$ and let $A(1,-2,3), B(3,2,1), C(6,4,4)$.
(1) Find the coordinate of the point D.
(2) If $E(1, y, 15)$ is on the plane $A B C$, find y.
[19] Given a regular tetrahedron $P A B C$, whose side's length is 1 , and let H be the intersection of the line passing through A and perpendicular to $P B C$ and to the plane $P B C$. Let $\overrightarrow{P A}=\vec{a}, \overrightarrow{P B}=\vec{b}, \overrightarrow{P C}=\vec{c}$.
(1) Find the dot products $\vec{a} \cdot \vec{b}, \vec{b} \cdot \vec{c}, \vec{c} \cdot \vec{a}$.
(2) Present $\overrightarrow{P H}$ by \vec{b}, \vec{c}.
(3) Evaluate the volume of the tetrahedron $P A B C$.

Example 7
[1] Find the equation of following lines.
(1) Line passing through the point $(-3,4,5)$ and parallel to the vector $\vec{v}=$ $(1,-2,1)$.
(2) Line passing through two points $(1,-3,7),(-2,4,-2)$.
[2] Find the equation of following planes.
(1) Surface passing through the point $(-3,4,5)$ and perpendicular to the vector $\vec{v}=(1,-2,1)$.
(2) Surface passing through three points $(1,-3,7),(-2,4,-2),(0,2,1)$.
[20] Find the equation of following lines.
(1) Line passing through the point $(1,2,3)$ and parallel to the vector $\vec{v}=(2,3,4)$.
(2) Line passing through two points $(0,1,3),(1,-2,4)$.
[21] Find the equation of following planes.
(1) Surface passing through the point $(1,2,3)$ and perpendicular to the vector $\vec{v}=(7,6,5)$.
(2) Surface passing through three points $(-1,2,4),(2,1,6),(-3,1,-2)$.

Example 8

[1] Find the intersection point of the following line and plane.

$$
\frac{x-1}{3}=\frac{y+1}{2}=\frac{z+2}{-2}, \quad 3 x+2 y+z=1
$$

[2] Find the distance between the following point and the plane.

$$
(1,-1,2), \quad 2 x-y+z-1=0
$$

[22] Find the intersection points of the following lines and the planes.
(1) $\frac{x+2}{-2}=y-3=\frac{y-1}{-3}, \quad 2 x-y+3 z+2=0$
(2) $\frac{x+1}{-2}=\frac{y-1}{3}=\frac{z+2}{-2}, \quad 2 x-3 y+z-1=0$
[23] Find the distance between the folioing points and the planes.
(1) $(2,0,-1), \quad x+y-2 z+3=0$
(2) $(-1,1,-1), \quad 3 x-y+2 z+1=0$
[24] Find the equation of lines passing the point $(1,2,3)$ and perpendicular with the following planes.
(1) $2 x+3 y+z+1=0$
(2) $-x+2 y-2 z-3=0$

Example 9

Prove the following statements.
(1) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
(2) $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})$
(3) $(k \vec{a}) \times \vec{b}=k(\vec{a} \times \vec{b})=\vec{a} \times(k \vec{b})$
(4) $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \times \vec{c}) \vec{a}$
(5) $(\vec{a} \times \vec{b}) \perp \vec{a}$ and $(\vec{a} \times \vec{b}) \perp \vec{b}$
(6) $(\vec{a} \times \vec{b})^{2}=(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})^{2}$
[25] Find the cross product $\vec{a} \times \vec{b}$.
(1) $\vec{a}=(1,-1,1), \quad \vec{b}=(-2,3,1)$
(2) $\vec{a}=(-1,1,2), \quad \vec{b}=(1,0,-1)$
[26] Find the unit vector which is perpendicular to the both vectors $\vec{a}=(1,1,3), \vec{b}=(-3,1,4)$.
[27] Given two vectors $\vec{a}=(1,0,-2), \vec{b}=(-2, k, 4)$. Find k, if $\vec{a} \times \vec{b}=\overrightarrow{0}$
[28] Prove that the volume of parallelepiped whose three edges are represented by $\vec{a}, \vec{b}, \vec{c}$ is $\|\vec{c} \cdot(\vec{a} \times \vec{b})\|$.

Exercises

[1] Given a quadrilateral $O A B C$. Let P be the centre of gravity of the triangle $\triangle O A B$ and Q be the centre of gravity of the triangle $\triangle O B C$. Let $\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}, \overrightarrow{\mathrm{OC}}=\vec{c}$.
(1) Find z if $\overrightarrow{\mathrm{PQ}}=x \vec{a}+y \vec{b}+z \vec{c}$
(2) if $\angle \mathrm{AOC}=60^{\circ}, O A=3, O C=2$, find $\|\overrightarrow{\mathrm{PQ}}\|$.
[2] Given a triangle $\triangle \mathrm{OAB}$ and let $O A=2, O B=3, \angle \mathrm{AOB}=120^{\circ}$, and M be the midpoint of $A B$ and N be the midpoint of $A M$. Let $\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$
(1) Find the dot product $\vec{a} \cdot \vec{b}$.
(2) Present $\overrightarrow{\mathrm{OM}}$ and $\overrightarrow{\mathrm{ON}}$ by \vec{a}, \vec{b}.
(3) Find the dot product $\overrightarrow{\mathrm{OM}} \cdot \overrightarrow{\mathrm{ON}}$.
(4) Let $\angle \mathrm{MON}=\theta$, evaluate $\cos \theta$.
[3] Given two vectors $\vec{a}=(1, x), \vec{b}=(2,-1)$.
(1) If $\vec{a}+\vec{b}$ and $2 \vec{a}-3 \vec{b}$ are perpendicular, find x.
(2) If $\vec{a}+\vec{b}$ and $2 \vec{a}-3 \vec{b}$ are parallel, find x.
[4] Let $A B C D$ be a quadrilateral such as $A B / / D C, A B=6, C D=4$. Let M be the midpoint of $A B$ and N be the midpoint of $A D$. Let P be the point on the segment $M N$ such as $M P: P N=1: 3$. And let Q be the intersection of $C P$ and $A B$. Let $\overrightarrow{\mathrm{AB}}=\vec{a}$, $\overrightarrow{\mathrm{AD}}=\vec{b}$
(1) Present $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AP}}$ by \vec{a}, \vec{b}.
(2) Find the ratio $C P: P Q$.
(3) If $A D=5, \angle \mathrm{BAD}=60^{\circ}$, evaluate the length of $C Q$.
[5] Given three vectors $\vec{a}=(\cos \alpha, \sin \alpha, 0), \vec{b}=(\sin \alpha,-\cos \alpha, t), \vec{c}=(\sin \alpha, \cos \alpha, 0)$, where α, t are real numbers. Let $\vec{v} \neq \overrightarrow{0}$ be perpendicular to \vec{a} and \vec{b}. Find $\cos \theta$, where θ is the angle between \vec{v} and \vec{c}.
[6] Let $A(1,0,0), B(2,1,0), C(3,4,1)$, and $\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b} \overrightarrow{\mathrm{OC}}=\vec{c}$, and let α be the plane passing three points A, B, C.
(a) Let $P(x, y, z)$ be a point such that $\overrightarrow{\mathrm{OP}}=r \vec{a}+s \vec{b}+t \vec{c}$. Present r, s, t using by $x, ; y, ; z$.
(b) When the point P is on the plane α, find the equation of x, y, z.
(c) Given the point $\mathrm{D}(4,5,7)$. Find the H on the plane α, which satisfies the condition $\mathrm{DH} \perp \mathrm{AB}, \mathrm{DH} \perp \mathrm{BC}$.
[7] Let α be the plane passing through three points $O(0,0,0), A(1,1,0), B(1,0,1)$.
(1) Find the unit vector parallel to the plane α and perpendicular to $\overrightarrow{\mathrm{OA}}$.
(2) Find the centre and radius of circumscribed circle of the triangle $\triangle \mathrm{OAB}$ on the plane α.

