AO Entrance Exams for Tokyo Institute Technology University 2011
[1] Find every natural number n, which satisfies the condition : n ! is a multiple of n^{2}.
[2] Find the range of

$$
\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}
$$

where a, b, c are changing as the length of three sides of triangle.
[3] Find every natural number n, such that there exits n-th degree polynomial $f(x)$ satisfying the condition : $f\left(x^{2}+1\right)=f(x)^{2}+1$.
[4] Given the regular enneagon (9 vertices), inscribed the circle with radius 1. Find five regular n-gons, whose vertices are on the sides of the regular enneagon. And each n, find the length of the side of these regular n-gons.

Entrance Exams for Kyoto University 2011

[1] (1) In a box there are 9 cards, on which are written the number from 1 to 9 each, and on every card the different number is written. From this box we pick two cards at the same time and let X be the smallest number between two cards. We put back these cards into the box, and pick two cards at the same time again, and let Y be the smallest number between two cards. Find the probability of $X=Y$.
(2) Evaluate $\int_{0}^{\frac{1}{2}}(x+1) \sqrt{1-2 x^{2}} d x$
[2] Let a, b, c be real numbers, and let T be a linear transformation presented by $\left(\begin{array}{ll}a & 1 \\ b & c\end{array}\right)$, which satisfies foliowing two conditions:
(i) T transforms $(1,2)$ to $(1,2)$
(ii) When T transforms $(1,0)$ to a point A , and $(0,1)$ to a point B , then the area of the triangle $\triangle \mathrm{OAB}$ is $\frac{1}{2}$
Find the values of a, b, c.
[3] Find the area surrounded by two following curves :

$$
y=x, \quad y=\left|\frac{3}{4} x^{2}-3\right|-2
$$

[4] Prove the following inequality

$$
\left(1-a_{1}\right)\left(1-a_{2}\right) \cdots\left(1-a_{n}\right)>1-\left(a_{1}+\frac{a-2}{2}+\cdots+\frac{a_{n}}{2^{n-1}}\right)
$$

when $\frac{1}{2}<a_{j}<1 \quad(j=1,2, \cdots, n)$ and $n \geq 2$ is a integer.
[5] Prove that the sphere whose origin is $O(0,0,0)$ and radius is $\sqrt{6}$ and the plane passing three points $(4,0,0),(0,4,0),(0,0,4)$ intersect each other, and find the range of the value $x y s$ when (x, y, z) moves on this intersection.
[6] Prove that there exist a sphere, which passes every 4 vertices A, B, C, D of a tetrahedron.

